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ABSTRACT
Symbolic Execution is a program analysis technique used to
increase software reliability. Modern software often manipu-
late complex data structures, many of which being similar to
arrays. We present a novel approach and implementation in
Symbolic PathFinder for handling symbolic arrays in Java.
It enables analyzing a broader class of programs that ma-
nipulates arrays. We also extend the Symbolic Pathfinder
testcase generation to support numeric arrays.
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1. INTRODUCTION
Symbolic Execution (SE) [9] is a powerful program anal-

ysis technique, widely used in many application domains
such as test data generation, partial verification, symbolic
debugging, and program reduction. It is increasingly used
not only in academic settings, but also in industry, such as in
Microsoft, NASA, IBM and Fujitsu [3]. Instead of executing
a program P with inputs as concrete values, SE executes the
program on symbols, and computes the program effects as
functions in terms of these symbolic inputs. There are many
tools that support symbolic execution for programs [1,2, 5].
We focus on Symbolic PathFinder—part of Java PathFinder
tool set.

In this paper, we describe recent advancement for Sym-
bolic PathFinder (SPF) [12], a symbolic execution tool for
Java bytecode, part of the Java PathFinder tool-set1. In
particular, we introduce a new support for symbolic arrays
with a symbolic length using an array theory implemented
in several solvers such as Z3 [6].

The previous version of SPF can handle arrays of fixed
size, with symbolic elements and indices. The advantage of

1http://babelfish.arc.nasa.gov/trac/jpf/
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this simple support is that it works well with model count-
ing too. The disadvantage, however, is that the nondeter-
ministic choices introduced to handle symbolic indices often
generates too many paths than can feasibly be explored. We
address this, by extending SPF with a “more symbolic” han-
dling of input arrays that leverage the theory of arrays in
existing solvers, notably Z3.

Our approach provides a symbolic treatment of arrays (of
unspecified length) including arrays of objects, treated us-
ing lazy initialization, which is distinguishing our work from
previous approaches. We also extended SPF to support au-
tomatic JUnit tests generation for methods manipulating
arrays. Finally, we re-implemented the constraints handling
in SPF to allow the use JConstraints2 [10] to benefit from
previous work.

Our novel implementation allows the symbolic execution
of a broader class of programs, and speeds up the execution
of some others. Nevertheless, we observed an increase in
states explored and analysis time in some specific cases.

2. SYMBOLIC ARRAYS
While formulating a mathematical science of computa-

tion, McCarthy proposed in [11] a basic theory of arrays
that characterizes arrays using only two axioms. Using the
notations store(a, i, v) to express that we store the value v
in the array a at index i , and a[i ] to express the load of the
element at index i in the array a, these axioms are:

∀ a, i , v , store(a, i , v)[i ] ' i
∀ a, i , j , v , i ' j ∨ store(a, i , v)[j ] ' a[j ]

The first axiom expresses that if we store an element v at
index i in the array a, loading from array a at index i returns
the element v . The second axiom expresses that storing an
element v at index i in a does not modify any other element
in a.

The SMT solver Z3 [6] implements the basic array theory
presented by McCarthy as well as a powerful extension called
combinatorial array logic [7]. It provides two operations on
arrays: select a i, that returns the element stored at index
i in the array a, and store a i v that returns a new array
identical to a, but with v at index i .

To make support for the theory of arrays in SPF, we have
to change the implementations of the array instruction—
there are two types of array instructions in Java: *ALOAD
instructions, that pop an array a and an index i from the
stack and returns the element a[i ], and *ASTORE instruc-

2http://www.github.com/psycopaths/jconstraints
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tions, that store an element in an array at a given index. We
provide a symbolic implementation for each of the *ALOAD
and *ASTORE instructions.

As part of this effort, we added support for JConstraints [10],
a constraint solver abstraction layer that supports a variety
of solvers, notably Z3 [6], Coral [13], and SMTInterpol [4].
Note, that we still expose the class PathCondition in SPF to
ensure backwards-compability. Using JConstraints instead
of the SPF backend is thus optional. JConstraints is main-
tained as a stand-alone library. The motivation for integrat-
ing JConstraints is that we can harness the several facilities
for optimizing constraints, e.g. by adding auxiliary defini-
tions and/or interpolations, and manipulating constraints.

We implement the ArrayExpression class from JConstraints,
that derives from Variable. An ArrayExpression contains a
symbolic integer representing the length of the array. We
also add SelectExpression and StoreExpression to JConstraints.
The SelectExpression contains an ArrayExpression a, an Ex-
pression<Integer> i and a value Expression<E> v , and ex-
presses that a[i ] = v . Similarly, a StoreExpression con-
tains two ArrayExpression a and a2, a symbolic index i
and a symbolic value v , and expresses that a2 = a[i ] ← v .
Using Z3 as a solver, these expressions are translated to
(= (v (select a i))) and (= (a2 (store a i v))) respectively.
We extend JConstraints-Z3 to support these expressions.

2.1 Arrays of Primitive Types
During the symbolic execution of a *ALOAD instruction,

e.g. IALOAD or BALOAD, an instance of JPCChoiceGen-
erator is created. There are three paths to explore: (i) The
index is strictly smaller than 0, which throws an ArrayIn-
dexOutOfBoundsException; (ii) the index is greater than the
length of the array; or (iii) the index is in bounds and we
are loading an element.

The implementation of IALOAD is presented in Listing
1.

1 if (!ti.isFirstStepInsn()) {
2 cg = new JPCChoiceGenerator(3);
3 ...
4 } else {
5 cg = ti.getVM().getChoiceGenerator();
6 }
7 ...
8 if ((Integer)cg.getNextChoice()==1) {
9 pc._addDet(NumericBooleanExpression.create(

indexAttr, NumericComparator.GE,
se.arrayExpression.length));

10 if (pc.simplify()) {
11 ... // Throw ArrayIndexOutOfBoundsException
12 } else {
13 ... // Ignore state
14 }
15 } else if ((Integer)cg.getNextChoice()==2) {
16 pc._addDet(NumericBooleanExpression.create(

indexAttr, NumericComparator.LT,
Constant.create(BuiltinTypes.SINT32, 0)));

17 if (pc.simplify()) {
18 ... // Throw ArrayIndexOutOfBoundsException
19 } else {
20 ... // Ignore state
21 }
22 }
23 else {
24 pc._addDet(NumericBooleanExpression.create(

indexAttr, NumericComparator.LT,
arrayAttr.length));

25 pc._addDet(NumericBooleanExpression.create(
indexAttr, NumericComparator.GE,
Constant.create(BuiltinTypes.SINT32, 0)));

26 if (pc.simplify()) {
27 ...
28 Variable<Integer> val = Variable.create(

BuiltinTypes.SINT32, varname);
29 pc._addDet(new SelectExpression(arrayAttr,

indexAttr, sym_value));
30 frame.setOperandAttr(val);
31 }
32 else {
33 ... // Ignore state
34 }
35 }

Listing 1: Symbolic IALOAD implementation

The condition in line 1 evaluates to true on the first execu-
tion of the construction, thus adding a path condition choice
to the current system state. It returns itself, so that JPF
executes this instruction again. This time, the condition in
line 1 evaluates to false, and a choice is made on line 8 and
15.

While exploring the paths, SPF calls a concrete solver
through JConstraints to determine if the new path condition
is satisfiable (lines 10, 17 and 26). If not, JPF backtracks to
a previous state, and explores another path.

Constraints on the index and the length of the array are
added to the path condition on lines 9, 16, 24 and 25. In
case (i) and (ii) from above, an exception is created (lines
11 and 18). In case (iii), we create a new symbolic variable
for the loaded element (line 28) and add a SelectExpression
to the path condition (line 29). JPF then continues the
execution of the program from this state.

To demonstrate this, we symbolically execute the test pro-
gram presented in Listing 2, with the integer i and the array
arr considered symbolic.

1 public int comp(int i, int[] arr) {
2 int a = arr[i];
3 return 1/a;
4 }

Listing 2: A simple array example

The statement in line 2 will be translated to an IALOAD
instruction in Java Bytecode. As shown previously, the sym-
bolic execution of this instruction creates three paths to ex-
plore: The index is smaller than 0, greater than the length of
the array or in bounds. The original implementation would
have generated two paths to check whether the index is out
of bounds, and one path for each possible in bounds value
of the index, assuming that the length of the symbolic array
is the same as the one passed as a parameter. We add the
constraints on the index on lines 9, 16, 24 and 25 in List-
ing 1. Since these constraints are the only ones in each of
these path conditions, all of them are satisfiable. The first
two paths lead to an erroneous system state thus we raise
an ArrayIndexOutOfBoundsException in both cases. The last
explored path leads to the execution of the next instruction,
on line 3. The division creates two new paths from this state:
The denominator is equal to 0 and an ArithmeticException is
raised, or the denominator is different from 0 and the result



of the division is returned. Since no constraint was added on
the value loaded from the array arr , both path conditions
are satisfiable. Thus, SPF returns four possible execution
paths: The index is smaller than 0, greater than the array
length, in bounds and the element loaded is 0, or in bounds
and the element loaded is different from 0. The last execu-
tion path is the only one leading to a correct behaviour.

We execute the IALOAD instruction symbolically as soon
as the index or the array is symbolic. If only the array
is symbolic, we translate the concrete index to a symbolic
Constant<Integer>. If only the index is symbolic, we need
to create a symbolic array containing all the elements of the
concrete array, as shown in Listing 3.

1 ElementInfo arrayInfo = ti.getElementInfo(
arrayRef);

2 ArrayExpression<Integer> arrayAttr =
ArrayExpression.create(BuiltinTypes.SINT32,
arrayInfo.toString(), arrayInfo.arrayLength());

3 for (int i = 0; i < arrayInfo.arrayLength(); i++) {
4 int arrValue = arrayInfo.getIntElement(i);
5 pc._addDet(new SelectExpression(arrayAttr,

Constant.create(BuiltinTypes.SINT32, i),
Constant.create(BuiltinTypes.SINT32,
arrValue)));

6 }
Listing 3: Creation of a symbolic array

We retrieve the information about the concrete array in
line 1, and create a new ArrayExpression with a fixed sym-
bolic length (line 2). We finally loop over all the elements in
the array (line 3) to add a select constraint for each of them
(line 5). Therefore, the symbolic array corresponds exactly
to the concrete array given as an input.

The implementation of the IASTORE instruction is very
similar to IALOAD. We still have three paths to explore de-
pending on the value of the index. If the path condition with
an index in bounds is satisfiable, we create a new ArrayEx-
pression newArrayAttr with the same symbolic length than
the previous ArrayExpression arrayAttr , and add a Store-
Expression to the path condition that links arrayAttr to
newArrayAttr . The bytecode instructions loading or storing
numeric types from an array, e.g. SALOAD, FASTORE are
all implemented using this approach. Only the type of the
values and arrays will differ. In the implementation of SA-
LOAD, we would for instance replace Expression<Integer>
by Expression<Short> for the symbolic value, since we are
loading a short instead of an int.

2.2 Arrays of Reference Types
We implement the AALOAD instruction slightly differ-

ently. The AALOAD instruction is used in Java Bytecode
to load references to complex objects from an array. An
object in the JVM is represented as an integer that ref-
erences the object itself. The reference is manipulated by
the JVM when an object is involved. To handle complex
object during symbolic execution, SPF uses Lazy initial-
ization [8]: When a symbolic object o is accessed, the lazy
initialization for o takes place. The following possibilities
are non-deterministically considered: o is equal to null ; o is
a previously initialized object; or o refers to a new object,
with uninitialized field values.

The structure of the AALOAD instruction is the same as
previously: We have three possible paths, depending on the

index. If the index is out of bounds, we throw an exception.
If not, we add the constraints on the index and length of the
array, and load a reference to an object. To achieve this last
step, we use lazy initialization, as shown in Listing 4.

1 ...
2 if (currentChoice < numSymRefs) {
3 ArrayHeapNode candidateNode = prevSymRefs[

currentChoice];
4 pc._addDet(NumericBooleanExpression.create(

indexAttr, NumericComparator.EQ,
candidateNode.arrayIndex));

5 if (pc.simplify()) {
6 se = new SelectExpression(arrayAttr, indexAttr,

candidateNode.getSymbolic());
7 pc._addDet(se);
8 daIndex = candidateNode.getIndex();
9 frame.pop(2);

10 frame.push(daIndex, true);
11 ...
12 } else {
13 ... // Ignore state
14 }
15 } else if (currentChoice == (numSymRefs)) {
16 if (pc.simplify()) {
17 se = new SelectExpression(arrayAttr, indexAttr,

Constant.create(BuiltinTypes.SINT32, −1));
18 pc._addDet(se);
19 frame.pop(2);
20 frame.push(MJIEnv.NULL, true);
21 ...
22 } else {
23 ... // Ignore state
24 }
25 } else {
26 if (pc.simplify()) {
27 HelperResult hpResult =

Helper.addNewArrayHeapNode(...);
28 daIndex = hpResult.idx;
29 ArrayHeapNode candidateNode = hpResult.n;
30 se = new SelectExpression(arrayAttr, indexAttr,

candidateNode.getSymbolic());
31 pc._addDet(se);
32 frame.pop(2);
33 frame.push(daIndex, true);
34 ...
35 } else {
36 ... // Ignore state
37 }
38 }

Listing 4: Lazy initialization in AALOAD

If numSymRefs objects were previously initialized, we have
numSymRefs +2 paths to explore: one for each of the previ-
ously initialized objects (lines 2-14); one for the null object
(lines 15-24); and one for a new object with uninitialized
field values (lines 25-37). For each of these paths, we add a
select constraint to the path condition to express that the
object was loaded from array arrayAttr at index indexAttr
(lines 7, 18 and 31). We finally push the concretized refer-
ence on the stack as a result of the AALOAD instruction
(lines 10, 20 and 33). Since the reference returned is now
concrete, the implementation of AASTORE is highly simi-
lar to IASTORE.

To demonstrate how arrays of reference types are handled,



we execute the test program presented in Listing 5 with both
arguments symbolic.

1 public int obj_array(int i, ObjTest[] arr) {
2 ObjTest obj = arr[i];
3 int a = obj.y;
4 return 1/a;
5 }
6

7 public class ObjTest {
8 int x;
9 int y;

10 }
Listing 5: A simple object array example

As in the previous example, execution paths leading to
ArrayIndexOutOfBoundsException are explored (line 2, List-
ing 5). We focus on the path in which the index is within
bounds. We use lazy initialization to load an object. Since
no object was previously generated, two paths are created.
We load null or a new object. If obj is null, the instruction
on line 3 raises a NullPointerException, since we are referenc-
ing a field on a null object. If obj is a new object, its field
y is a new symbolic integer. Thus, as in the previous exam-
ple, the division creates two execution paths, one of them
leading to a ArithmeticException.

The symbolic execution of this program thus creates 5
different paths: Two leading to an index out of bounds, one
leading to referencing a field on a null object, one leading
to a division by 0 because of obj .y being equal to 0 and the
last one leading to a correct behaviour.

3. TESTCASE GENERATION
We aim at providing concrete inputs leading to the sev-

eral execution paths encountered during the symbolic exe-
cution. The current version of SPF provides the SymbolicSe-
quenceListener to generate JUnit3 tests for each of the paths
explored when the symbolic variables have numeric types.
We present an extension of this listener to support arrays.

Our current work enables the generation of integer ar-
rays matching the constraints in the path condition. JCon-
straints provides a Valuation of the expressions when we call
a solver. To obtain a concrete solution for an expression,
we can call the evaluate method with the Valuation passed
to the solver instead of retrieving the solution field of the
expression. We use this feature to obtain the length of a
symbolic array.

We collect all the select constraints regarding a symbolic
array. Each constraint contains a symbolic array a, a sym-
bolic index i and a symbolic value v . We retrieve concrete
values for i and v using the Valuation. We order the select
constraints to keep only the original elements in the array:
If an element is stored at index i , and a select constraint
occurs after the store instruction, the select constraint is
ignored during the construction of the array.

We finally construct an array of the given length, and
populate it using the information provided by the select con-
straints. In a future work, we will study how complex data
structures can be generated, and thus enhance the array
generation to support reference arrays.

The JUnit tests generated for the method presented in
Listing 2 are shown in Listing 6.

3http://junit.org

1 @Test
2 public void test0() {
3 comp(0,new int[]{1});
4 }
5

6 @Test(expected =
java.lang.ArithmeticException.class)

7 public void test1() {
8 comp(0,new int[]{0});
9 //leads to java.lang.ArithmeticException

10 }
11

12 @Test(expected =
java.lang.ArrayIndexOutOfBoundsException.class
)

13 public void test2() {
14 comp(1073741824,new int[]{0});
15 //leads to java.lang.ArrayIndexOutOfBoundsException
16 }
17

18 @Test(expected =
java.lang.ArrayIndexOutOfBoundsException.class
)

19 public void test3() {
20 comp(−2147483648,new int[0]);
21 //leads to java.lang.ArrayIndexOutOfBoundsException
22 }

Listing 6: JUnit Tests Generated for the code in Listing 2

4. EVALUATION
We evaluate the effects of the new handling of symbolic

arrays. The original implementation allowed the execution
of *ALOAD and *ASTORE instructions with symbolic in-
dices with fixed-size arrays. Our new implementation allows
the execution of symbolic arrays with a symbolic length.
The results presented were obtained on a machine featuring
an Intel Core i5 @2.50 GHz and 4 GB of memory.

We compare the two implementations on the method shown
in Listing 7, with both arguments symbolic. We call this
method with an array of size N . The results are shown in
Table 1.

1 public int test1(int i, int[] arr) {
2 int a = arr[i];
3 int b = arr[i];
4 return 1/a;
5 }

Listing 7: Test Program 1.

N
# of states Analysis time

SPForig SPFarray SPForig SPFarray

10 153 11 <1s <1s
100 10.503 11 2s <1s
1.000 1.005.003 11 89s <1s

Table 1: Evaluation on Test Program 1.

Here column SPForig and SPFarray refer to the results ob-
tained with the original implementation and the implemen-
tation that uses the new handling of arrays with symbolic
length, respectively. The new implementation does not de-
pend on the length of the array; it creates three paths for any
*ALOAD and *ASTORE instruction. Thus, we observe a

http://junit.org


significant difference in speed and states explored when the
length of the array grows.

The new implementation also enables the symbolic execu-
tion of the method shown in Listing 8.

1 public int test2(int[] arr) {
2 int i = arr.length;
3 return 1/i;
4 }

Listing 8: Test Program 2.

When given an array with a length different from 0, the
original implementation cannot detect a possible division
by 0 in the program presented in Listing 8. The original
implementation also cannot execute the program presented
previously in Listing 5.

Nevertheless, the original implementation is faster in some
specific cases such as the example program presented in List-
ing 9 with results shown in Table 2. seems maybe too silly

1 public void test3(int j) {
2 int[] arr = new int[N];
3 arr[j] = 0;
4 for(int i = 0; i < N; i++) {
5 int temp = arr[i];
6 }
7 }

Listing 9: Test Program 3.

N
# of states Analysis time

SPForig SPFarray SPForig SPFarray

10 13 35 <1s <1s
50 53 155 <1s 4s
100 103 305 <1s 11s

Table 2: Evaluation on Test Program 3.

The reason is that when executing an *ASTORE instruc-
tion when the index is symbolic, the new implementation
will create a new symbolic array while the original will create
a path for each possible value of the index. When array in-
structions with concrete indices are later executed, the new
implementation will use symbolic semantics. Three states
will be generated testing if the index is in bounds or not.
The original implementation will use concrete semantics and
will not create new states to explore.

We observe similar results when symbolically executing a
Dijkstra algorithm with a fixed-size symbolic array, as pre-
sented in Table 3.

N
# of states Analysis time

SPForig SPFarray SPForig SPFarray

2 3 34 <1s <1s
3 17 598 <1s 8s

Table 3: Evaluation on a Dijkstra algorithm

5. CONCLUSIONS AND FUTURE WORK
We presented enhancements to SPF for handling programs

that manipulate arrays. In particular, by incorporating the
theory of arrays used in e.g., Z3, we can perform symbolic

execution of arrays with symbolic length. The support en-
compasses both arrays of primitive type and reference types.
The latter is made possible through a novel combination
with lazy initialization. We also expanded the JUnit tests
generation to arrays with numeric elements. Finally, we
added an option to use JConstraints, to use constraints op-
timization features.

In future work we plan to investigate how complex data
structures can be generated to use in JUnit tests. Further-
more, we plan to evaluate our work in the context of data
structures similar to arrays, such as lists, or collections.
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