
Towards High-Assurance Cryptographic 
Software: the F* Proof Assistant

Aymeric Fromherz
Inria Paris,

MPRI 2-30

1



Outline

• Previously: Proving the security of crytographic protocols

• Today:
• Verifying implementations of cryptographic protocols

• The F* proof assistant
• The functional core of F*

• Exercises

• Try it online at https://fstar-lang.org/tutorial/

• Or install it locally: https://github.com/FStarLang/FStar

2

https://fstar-lang.org/tutorial/


What can go wrong?

Protocol model:

secret s, key k

r <- sample()

m <- encrypt(k, concat(r, s))

send m

3



What can go wrong?

Protocol model:

secret s, key k

r <- sample()

m <- encrypt(k, concat(r, s))

send m

3

Protocol implementation:

let r = random() in

let m = encrypt(k, r . s) in

send m



What can go wrong?

Protocol model:

secret s, key k

r <- sample()

m <- encrypt(k, concat(r, s))

send m

3

Protocol implementation:

let random () = 0

let r = random() in

let m = encrypt(k, r . s) in

send m



What can go wrong?

Protocol model:

secret s, key k

r <- sample()

m <- encrypt(k, concat(r, s))

send m

3

Protocol implementation:

print(k)

let r = random() in

let m = encrypt(k, r . s) in

send m



What can go wrong?

Protocol model:

secret s, key k

r <- sample()

m <- encrypt(k, concat(r, s))

send m

3

Protocol implementation:

let r = random() in

let m = encrypt(k, r . s) in

send (r . s)



A Concrete Example: Modular Arithmetic

• Modular arithmetic is frequently used in cryptographic primitives

𝑔𝑥𝑦 𝑚𝑜𝑑 𝑝

8

0 < x,y < p,
g fixed

p is frequently a large prime number
(e.g., 2255  − 19) 



Implementing Modular Exponentiation

𝑎𝑏  𝑚𝑜𝑑 𝑛 = 𝑎 ∗ 𝑎 ∗  … ∗ 𝑎 𝑚𝑜𝑑 𝑛

• a is a big integer (e.g., 2255  − 19 )

• Exponentiation is even bigger

• Machine integers are (at most) 64 bits

• How to implement this? Need a bignum library

9

64 bit 64 bit 64 bit 64 bit



Textbook Multiplication

         1101         13

                        * 1010       *10

          - - - -      = 130

          0000

                         + 1101

                       + 0000

          + 1101

   - - - - - - - 

           10000010
10

carry

carry

carry



256-bit Modular Multiplication

11

64 bit 64 bit 64 bit 64 bit

×

carry

carry

carry

reduce

128 bit



256-bit Modular Multiplication

What can go wrong?

• Integer overflow (undefined output)

• Buffer overflow/underflow (memory error)

• Missing carry steps (wrong answer)

• Side-Channel attacks (leaks secrets)

12



Modular Arithmetic Optimizations

• For many primitives, modular arithmetic dominates the crypto 
overhead
• 𝑛2 64-bit multiplications
• Long intermediate arrays
• Many carry steps

• Many specific optimizations
• Use only 51 out of 64 bits to reduce carries
• Precompute reusable intermediate values
• Use alternative modular reductions (Montgomery, Barrett)
• Parallelize (vectorize) multiplication and squaring

• Complex optimizations imply more chances of bugs!

13



Many Bugs in Optimized Bignum Code

[2013] Bug in amd-64-64-24k Curve25519

 “Partial audits have revealed a bug in this software (r1 += 0 + carry should be r2 += 0 + 
carry in amd-64-64-24k) that would not be caught by random tests”
 – D.J. Bernstein, W.Janssen, T.Lange, and P.Schwabe

[2014] Arithmetic bug in TweetNaCl’s Curve25519

[2014] Carry bug in Langley’s Donna-32 Curve25519

[2016] Arithmetic bug in OpenSSL Poly1305

[2017] Arithmetic bug in Mozilla NSS GF128

…

14



TweetNaCL Arithmetic Bug

15

seb.dbzteam.org

seb.dbzteam.org



Heartbleed (CVE-2014-0160)

• Major vulnerability in OpenSSL TLS implementation

• Affected 17% of all SSL servers

• “Compromises the secret keys used to identify the service providers 
and to encrypt the traffic, the names and passwords of the users, and 
the actual content”

• “Allows attackers to eavesdrop on communications, steal data […] and 
impersonate services and users.”

• Attacks do not leave a trace

16



Heartbleed (CVE-2014-0160)

17wikipedia.org

• Missing bound check during a 
memcpy

response = malloc(length);
memcpy(response, recv.heartbeat, length);

response = malloc(length);
if length > ssl_state.heartbeat {return 0;}
memcpy(response, recv.heartbeat, length);



GotoFail (CVE-2014-1266)

18

status SSLVerifyExchange (…) { …
   if ((err = update(&hashCtx, &signedParams)) != 0)
        goto fail;
        goto fail;
    if ((err = final(&hashCtx, &hashOut)) != 0)
        goto fail;
    …
fail:
    SSLFreeBuffer(&signedHashes);
    SSLFreeBuffer(&hashCtx);
    return err;
}



GotoFail (CVE-2014-1266)

18

status SSLVerifyExchange (…) { …
   if ((err = update(&hashCtx, &signedParams)) != 0)
        goto fail;
        goto fail;
    if ((err = final(&hashCtx, &hashOut)) != 0)
        goto fail;
    …
fail:
    SSLFreeBuffer(&signedHashes);
    SSLFreeBuffer(&hashCtx);
    return err;
}

status SSLVerifyExchange (…) { …
   if ((err = update(&hashCtx, &signedParams)) != 0)
        goto fail;
    goto fail;
    if ((err = final(&hashCtx, &hashOut)) != 0)
        goto fail;
    …
fail:
    SSLFreeBuffer(&signedHashes);
    SSLFreeBuffer(&hashCtx);
    return err;
}



GotoFail (CVE-2014-1266)

• Duplicated goto statement in Apple’s TLS implementation

• Bad copy/paste? Faulty merge?

• Impact:
• Many invalid certificates were accepted

• Allows using an arbitrary private key for signing or skipping the signing step

• Enables Man-in-the-Middle attacks

• Many other vulnerabilities: SKIP, FREAK, many memory bugs, 
correctness issues, infinite loops, …

20



Formally Verifying Implementations

• Cryptographic implementations must be correct and secure, but also 
fast

• Cryptographic implementations are notoriously complex
• Many tricky optimizations

• Written in low-level, unsafe languages (C, Assembly)

• Multiplicity of parameters and variants

• We need strong, formal guarantees about the safety, correctness, 
and security of cryptographic implementations

21



The F* Proof Assistant

• A functional programming language
(like OCaml, Haskell, F#, …)

• With support for dependent types (like Coq, Agda), refinement types, … 

• Semi-automated verification by relying on SMT solving
(like Dafny, Why3, LiquidHaskell, …)

• Also offers a metaprogramming and tactic framework (Meta-F*)

• Extraction to OCaml, F#, C (under certain conditions)

• Try it online at https://fstar-lang.org/tutorial/

• Or install it locally: https://github.com/FStarLang/FStar

22

https://fstar-lang.org/tutorial/


F* Applications

• Wide range of applications, mostly security-critical
• HACL*: High-Assurance cryptographic library

• miTLS: Verified reference implementation of TLS (1.2 and 1.3)

• Noise*: End-to-end verified Implementations of 59 protocols in the Noise 
family

• EverParse: Verified binary parsers and serializers

• StarMalloc: Verified, concurrent, security-oriented memory allocator

23



The Functional Core of F*

• Recursive Functions

24

val factorial : nat -> nat

let rec factorial n =
 if n = 0 then 1 else n * (factorial (n-1))



The Functional Core of F*

25

type list (a:Type) =
    | Nil : list a
    | Cons : hd: a -> tl: list a -> list a

let rec map (f: a -> b) (l:list a) : list a = match l with
    | [] -> []
    | hd :: tl -> f hd :: map f tl

map (fun x -> x + 3) [1; 2; 3]

• Inductive types and pattern-matching



Dependent Types in F*

• Types can be indexed by values, or other types

26

val vec (a:Type) : nat -> Type

type vec (a:Type) =
  | Nil : vec a 0
  | Cons : #n: nat -> hd: a -> tl: vec a n -> vec a (n+1)

let rec append #a  #n #m (v1: vec a n) (v2: vec a m) : vec a (n + m) =
  match v1 with
  | Nil -> v2
  | Cons hd tl -> Cons hd (append tl v2)



Dependent Typechecking

• Two typechecking goals: 
• v1 = Nil |- v2 : vec a (n + m)

• v1 = Cons hd tl |- Cons hd (append tl v2) : vec a (n + m)

• Case 1: Goal is vec a m = vec a (n + m)
• v1 = Nil => n = 0. Goal is 0 + m = m.

Ok by SMT, using F* extensional type theory

27

let rec append #a  #n #m (v1: vec a n) (v2: vec a m) : vec a (n + m) =
  match v1 with
  | Nil -> v2
  | Cons hd tl -> Cons hd (append tl v2)



Refinement Types

• A refinement type is a base type qualified with a logical formula;
the formula can express invariants, preconditions, postconditions

• Refinement types are types of the form x : T { 𝝋 } where
• T is the base type

• x refers to the result of the expression, and

• 𝝋 is a logical formula

• The values of this type are the values M of type T such that 𝜑{𝑀/𝑥} 
holds

28



Refinement Types in F*

29

type nat = n : int { n >= 0 }

type pos = n : int { n > 0 }
type neg = n : int { n < 0 }
type empty = n : int { False }

type empty_list (a:Type) = l : list a { l == [] }
type nonempty_list (a:Type) = l : list a { l != [] }

let nonempty_hd (l : nonempty_list a) = match l with
  | hd :: _ -> hd

nonempty_hd [1; 2; 3]          // Returns 1
nonempty_hd []                     // Typing error returned by F*



Refinement Subtyping

• How to ensure that a given integer can be typed as a nat?
• Ex: 0:int <: nat

• When given an n : pos, how to use it as a n : nat ?
• Ex: 2 : pos <: nat

• We need rules for Refinement Subtyping 

30

type nat = n : int { n >= 0 }
type pos = n : int { n > 0 }



Refinement Subtyping: Elimination

• The type x : t { 𝝋 } is a subtype of t
For any expression e : (x : t { 𝜑 } ), it is always safe to eliminate the refinement 𝜑

• Examples: 
• x : nat (= int { x ≥ 0}) <: x : int

• f : list a -> list a, l : nonempty_list a,

=> f l : list a

31



Refinement Subtyping: Introduction

• For a term e : t, t is a subtype of the refinement type x : t { 𝝋 } if 
𝜑[𝑒/𝑥]

• Examples: 
• [x] : nonempty_list a

• If x : even, then x + 1 : odd

32



Refinement Subtyping

let incr_even (x : even) : odd = x + 1

let incr_odd (x :odd) : even = x + 1

let f (x: int) : int = 

    if x % 2 = 0 then incr_even x

    else incr_odd x

33

If branch, two goals:

•   x % 2 = 0 |= x : int <: x : even

•   x % 2 = 0 |= incr_even x <: int

Else branch, two goals:

•  not (x % 2 = 0) |= x : int <: x : odd

•  not (x % 2 = 0) |= incr_odd x <: int



Combining Refinement and Dependent Types

34

val incr (x:int) : (y:int{y = x + 1})

let incr x = x + 1           // Correctly typechecks

let incr x = x + 2           // Subtyping check failed, expected type y:int{y = x + 1} 

val append (#a:Type) (l1 l2:list a) : (l:list a{length l == length l1 + length l2})

val seq_map (#a:Type) (f: a -> a) (s:seq a) : (s’: seq a{

 length s’ == length s ⋀

 ∀ (𝑖: 𝑛𝑎𝑡). i < length s ⇒ s’.[i] == f s.[i]})



Combining Refinement and Dependent Types

35

// Sample cryptographic library interface in F*
module AES

type key  // Abstract type for secrets  
type block = b: bytes{length b == 16}

val encrypt: k: key -> p:block -> c:block {c == AES(k, p)}
val decrypt: k: key -> c:block -> p:block {c == AES(k, p)}



Type Safety

• Safety means that all logical refinements hold at runtime

• Theorem (safety):
For a program A and a type T, if ∅ ⊢ 𝐴 ∶ 𝑇, then A is safe

36



Interfaces and Modular Typing

• Interfaces abstract the underlying implementation and definitions

• Interfaces are optional

37

let seq (a: Type) = list a

let rec index #a s i =
    if i = 0 then List.hd s else index (List.tl s) (i – 1)

let rec upd #a s i v =
    if i = 0 then v :: List.tl s
    else (List.hd s) :: upd (List.tl s) (i-1) v

val seq (a: Type) : Type

val index (#a:Type) (s: seq a)
         (i:nat{i < length s}) : a

val upd (#a:Type) (s: seq a)
        (i:nat{i < length s}) (v: a) : seq a 

Seq.fsti Seq.fst



Modular Typing, Taming Proof Complexity

• Implementation details are not available for verification

• Replacing, e.g., SHA2 by another algorithm does not impact other modules

• Interfaces can be used as abstractions
38

Hash.fsti

val hash

Hash.fst

let hash = sha2

HKDF.fst

let hkdf = …
 Hash.hash …



Modular Typing, Formally

• We write 𝐼0 ⊢ 𝐴 ↝ 𝐼 when, in the typing environment 𝐼0, the module 
𝐴 is well-typed and exports the interface 𝐼

• Theorem (Modular Typing):
For programs 𝐴0, 𝐴, interface 𝐼0 and type 𝑇,

If ∅ ⊢ 𝐴0 ↝ 𝐼0 and 𝐼0 ⊢ 𝐴 ∶ 𝑇, then ∅ ⊢ 𝐴0 . 𝐴 ∶ 𝑇

• This gives us safety of the program 𝐴0 . 𝐴 based on the previous 
theorem

39



Assertions and Assumptions

Like many other languages, F* supports assertions and assumptions.
•  assert (P) : Introduce a proof obligation for predicate P
•  assume (P) : Adds predicate P to the current context.

Examples:

One can also use admit () to introduce False in the context and admit the 
remaining of a  proof

40

let f (x: int) : unit =
    assume (x % 2 == 0);
    assert ((x + 1) % 2 == 1)
    

let f (x: int) : unit =
    assume (False);
    assert (x == x + 1)    



Intrinsic vs Extrinsic Verification

• Intrinsic Proof: The type of a term includes properties of interest

• Pros:
• The proof easily follows the program

• The property is directly available when calling the function

• Cons:
• Proving while programming can be tedious

• The type signature becomes harder to read

• What about many different properties?
41

val list (a:Type) : Type
val length (#a:Type) (l: list a) : nat

val append (#a:Type) (l1 l2: list a) : (l: list a{length l == length l1 + length l2})



Extrinsic Verification: Lemmas

• F* supports built-in syntax for stating theorems.

42

val list (a:Type) : Type
val length (#a:Type) (l: list a) : nat
val append (#a:Type) (l1 l2: list a) : list a

val append_length (#a:Type) (l1 l2: list a) :
 Lemma (length l1 + length l2 == length (append l1 l2))



Exercises

• Write the length and append functions, and prove the append_length 
theorem

• Write a list reverse function, and prove that reverse is involutive

• Write a recursive sum function that sums integers from 1 to n, and 

prove that it is equal to 
𝑛 ∗(𝑛+1)

2

  (You will need the command open FStar.Mul to use the * operator)

43



F*’s Effect System

• By default, F* functions are total

    
                          

                                                              

44

let rec factorial (n:nat) : nat =
 if n = 0 then 1 else n * (factorial (n-1))



F*’s Effect System

• By default, F* functions are total

• Tot is an effect, capturing that functions always terminate, and that 
they have no side-effects.

• What happens if we try to give this weaker type to factorial?

44

let rec factorial (n:nat) : Tot nat =
 if n = 0 then 1 else n * (factorial (n-1))

let rec factorial (n:int) : Tot int =
 if n = 0 then 1 else n * (factorial (n-1))



F* Termination Checker

Arguments in recursive calls must decrease according to a well-founded 
ordering <<

Definition: An ordering is well-founded is it does not admit any infinite 
descending chain

46

let rec factorial (n:int) : Tot int =
 if n = 0 then 1 else n * (factorial (n-1))

Subtyping check failed, expected type (x:int{x << n}), got type int

factorial (-1) loops!



Semantic Termination Checking

• Natural numbers related by <    (e.g., 1 << 2 since 1 < 2)

• Inductives related by subterm ordering   (e.g., tl << Cons hd tl)

• By default, a recursive function with several arguments uses a 
lexicographical order on the arguments

47



Termination Checking, Examples

• Goal:   n – 1 << n. 
• Ordering on naturals is <, SMT can prove automatically n – 1 < n

• Goal: %[tl; l2] << %[l1; l2].
• tl << l1 or (tl == l1 ⋀ l2 << l2)

• Subterm ordering on l1 gives tl << l1.

48

let rec factorial (n:nat) : Tot nat =
 if n = 0 then 1 else n * (factorial (n-1))

let rec append #a (l1 l2: list a) : list a =
   match v1 with
  | Nil -> v2
  | Cons hd tl -> Cons hd (append tl v2)



Termination Checking, Examples

Does this function pass termination checking?

49

let rec ackermann (n m:nat) : Tot nat =
    if m=0 then n + 1
    else if n = 0 then ackermann 1 (m - 1)
    else ackermann (ackermann (n - 1) m) (m - 1)



Termination Checking, Examples

Does this function pass termination checking?

49

let rec ackermann (n m:nat) : Tot nat =
    if m=0 then n + 1
    else if n = 0 then ackermann 1 (m - 1)
    else ackermann (ackermann (n - 1) m) (m - 1)

a



Termination Checking, Examples

Does this function pass termination checking?

49

let rec ackermann (n m:nat) : Tot nat =
    if m=0 then n + 1
    else if n = 0 then ackermann 1 (m - 1)
    else ackermann (ackermann (n - 1) m) (m - 1)

let rec ackermann (n m:nat) : Tot nat (decreases %[m; n]) =
    if m=0 then n + 1
    else if n = 0 then ackermann 1 (m - 1)
    else ackermann (ackermann (n - 1) m) (m - 1)

a



F* Effect System: Divergence

• We might want to write non-terminating code:
• Web servers, operating systems, TLS protocol implementation, …

• F* provides a built-in effect for divergence

• Code must still typecheck, but termination checker is disabled

52

let rec factorial (n:int) : Dv int =
    if n = 0 then 1 else n * (factorial (n-1))



Divergence: Avoiding inconsistencies

• Termination is required for consistency in proof assistants

• F* effect system encapsulates effectful code: By default, different 
effects cannot interact

53

let rec loop () : Dv False = loop ()                  // This typechecks!

let f (x : int) : Tot (y:int{y == x + 1}) = let _ = loop () in x        // What prevents this?

let f (x : int) : Tot (y:int{y == x + 1}) = let _ = loop () in x

 Computed type "int" and effect "DIV" is not compatible with the annotated type 
"int" effect "Tot"



Subeffecting

• Pure code cannot call potentially divergent code, and only pure code 
can appear in specifications and proofs.

• But including pure code in divergent code can be useful

• F* supports sub-effecting: Tot t <: Dv t

54

let rec factorial (n:int) : Dv int = if n = 0 then 1 else n * (factorial (n-1))

We do not want to redefine each basic operator



Intrinsic Divergence Verification

• Only pure code can appear in specifications

55

let rec factorial (n:int) : Dv int = if n = 0 then 1 else n * (factorial (n-1))

val factorial_lemma (n:int) : Lemma (n ≥ 0 => factorial n ≥ 0)

let rec factorial (n:int) : Dv (y:int{n ≥ 0 => y ≥ 0}) =
    if n = 0 then 1 else n * (factorial (n-1))



The GTot effect

• F* also allows writing Ghost code for specifications, proofs, … which 
will be erased during extraction.

56

// Specification of factorial, using natural numbers
val factorial_spec: nat -> GTot nat

// Implementation, using machine integers
val factorial: n:uint64 -> Tot (y:uint64{to_nat y == factorial_spec (to_nat n)})



GTot Subeffecting

• Total code can be used in Ghost functions: Tot t <: GTot t

• Ghost code cannot be used in total functions

• Small subtelty: Ghost code for non-informative types (e.g., ghost values) is 
allowed (useful for proof purposes)

57

val f: nat -> GTot nat

let g (n: nat) : Tot nat =
    let x = f n in
    x + 1

f is ghost, hence erased at runtime.

How to compile this statement?



Refined Computation Types

• So far, refinement in value types:

• F* also allows refined computation types:

• Three elements:
• Effect (here, Pure), result type (here, int), specification (e.g., pre and post)

•  Tot t is defined as an abbreviation of
 Pure t (requires True) (ensures fun _ -> True)

58

val incr (n:int) : Tot (y:int{even n => odd y})

val factorial (n:int) : Pure int (requires n ≥ 0) (ensures fun y -> y ≥ 0)



Refined Computation Types

• Other effects are defined in a similar fashion

59

let rec loop (_:unit) : Div unit (requires True) (ensures fun _ -> False) = loop ()

Dv t == Div t (requires True) (ensures fun _ -> True)

val append_length (#a:Type) (l1 l2: list a) : Ghost unit
 (requires True)
 (ensures fun _ -> length l1 + length l2 == length (append l1 l2))

GTot t == Ghost t (requires True) (ensures fun _ -> True)

Lemma  (requires P) (ensures Q) = Ghost unit (requires P) (ensures fun _ -> Q)



Exercises

• Stack, StackClient

• QuickSort: https://fstar-
lang.org/tutorial/book/part1/part1_quicksort.html#exercises

60



Working around the SMT solver

• So far, all F* proofs were discharged by SMT.

• Convenient, automated, but:
• Cannot reason about induction (manual inductive proofs)
• Struggles with some theories (e.g., complex modular arithmetic)
• Performance degrades as the context grows (requires clever 

abstractions/interfaces for large programs)

• F* provides other reasoning facilities: normalization, the calc 
statement, and tactics

61



Proof by Normalization

• Dependently typed proof assistants include a normalizer which 
reduces computations during typechecking.

• F* provides access to the normalizer for proof purposes.

62

let rec length #a (l: list a) = match l with
  | [] -> 0  | hd :: tl -> 1 + length tl

assert (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)



Proof by Normalization, Example

63

let rec length #a (l: list a) = match l with
  | [] -> 0  | hd :: tl -> 1 + length tl

assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

match [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl     == 10      ↝ 
1 + match [2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl   == 10 ↝
…

10 == 10 ↝
True

• Extremely useful for proofs involving recursive functions and concrete terms



Proof by Normalization

• The normalizer only performs reductions, it does not use logical facts 
in the context

• The normalizer cannot reduce symbolic terms

• The normalizer can be fine-tuned (only include certain reduction 
steps, only unfold some definitions, definitions with a given attribute, 
…)

64

assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

let f (l:list a { length l == 10}) = assert_norm (length l == 10)



Calc Statement

• Many (mathematical) proofs consist of a succession of 
equalities/comparisons:

(𝑎 + 𝑏 ∗ 2𝑐)  ∗ 2𝑑 == 𝑎 ∗ 2𝑑 + 𝑏 ∗ 2𝑐  ∗ 2𝑑 == 𝑎 ∗ 2𝑑 + 𝑏 ∗ 2𝑐+𝑑  

• F* provides a construct to emulate this:

  

65

calc (==) {
  e1; 
  (==) { // proof of e1 == e2 }
  e2;
  (==) { // proof of e2 == e3 }
  e3;
}

calc (≥) {
  e1; 
  (==) { // proof of e1 == e2 }
  e2;
  (≥) { // proof of e2 ≥ e3 }
  e3;
}



F* Tactics

• F* provides a metaprogramming and tactics framework, called Meta-F*

• Works well for:
• Small rewritings/goal manipulation

• Specific types of goals (separation logic, ring normalization)

• F* goal inspection

• Not recommanded as the main proof technique, better to use as a help 
to SMT

66

assert (pow2 19 == 524288) by (compute (); dump "after compute")



Exercises

• Arithmetic proofs using calc

67


	Slide 1: Towards High-Assurance Cryptographic Software: the F* Proof Assistant
	Slide 2: Outline
	Slide 3: What can go wrong?
	Slide 4: What can go wrong?
	Slide 5: What can go wrong?
	Slide 6: What can go wrong?
	Slide 7: What can go wrong?
	Slide 8: A Concrete Example: Modular Arithmetic
	Slide 9: Implementing Modular Exponentiation
	Slide 10: Textbook Multiplication
	Slide 11: 256-bit Modular Multiplication
	Slide 12: 256-bit Modular Multiplication
	Slide 13: Modular Arithmetic Optimizations
	Slide 14: Many Bugs in Optimized Bignum Code
	Slide 15: TweetNaCL Arithmetic Bug
	Slide 16: Heartbleed (CVE-2014-0160)
	Slide 17: Heartbleed (CVE-2014-0160)
	Slide 18: GotoFail (CVE-2014-1266)
	Slide 19: GotoFail (CVE-2014-1266)
	Slide 20: GotoFail (CVE-2014-1266)
	Slide 21: Formally Verifying Implementations
	Slide 22: The F* Proof Assistant
	Slide 23: F* Applications
	Slide 24: The Functional Core of F*
	Slide 25: The Functional Core of F*
	Slide 26: Dependent Types in F*
	Slide 27: Dependent Typechecking
	Slide 28: Refinement Types
	Slide 29: Refinement Types in F*
	Slide 30: Refinement Subtyping
	Slide 31: Refinement Subtyping: Elimination
	Slide 32: Refinement Subtyping: Introduction
	Slide 33: Refinement Subtyping
	Slide 34: Combining Refinement and Dependent Types
	Slide 35: Combining Refinement and Dependent Types
	Slide 36: Type Safety
	Slide 37: Interfaces and Modular Typing
	Slide 38: Modular Typing, Taming Proof Complexity
	Slide 39: Modular Typing, Formally
	Slide 40: Assertions and Assumptions
	Slide 41: Intrinsic vs Extrinsic Verification
	Slide 42: Extrinsic Verification: Lemmas
	Slide 43: Exercises
	Slide 44: F*’s Effect System
	Slide 45: F*’s Effect System
	Slide 46: F* Termination Checker
	Slide 47: Semantic Termination Checking
	Slide 48: Termination Checking, Examples
	Slide 49: Termination Checking, Examples
	Slide 50: Termination Checking, Examples
	Slide 51: Termination Checking, Examples
	Slide 52: F* Effect System: Divergence
	Slide 53: Divergence: Avoiding inconsistencies
	Slide 54: Subeffecting
	Slide 55: Intrinsic Divergence Verification
	Slide 56: The GTot effect
	Slide 57: GTot Subeffecting
	Slide 58: Refined Computation Types
	Slide 59: Refined Computation Types
	Slide 60: Exercises
	Slide 61: Working around the SMT solver
	Slide 62: Proof by Normalization
	Slide 63: Proof by Normalization, Example
	Slide 64: Proof by Normalization
	Slide 65: Calc Statement
	Slide 66: F* Tactics
	Slide 67: Exercises

