Towards High-Assurance Cryptographic Software: the F* Proof Assistant

Aymeric Fromherz Inria Paris, MPRI 2-30

Outline

- Previously: Proving the security of crytographic protocols
- Today:
 - Verifying implementations of cryptographic protocols
 - The F* proof assistant
 - The functional core of F*
 - Exercises
 - Try it online at https://fstar-lang.org/tutorial/
 - Or install it locally: <u>https://github.com/FStarLang/FStar</u>

Protocol model: secret s, key k r <- sample() m <- encrypt(k, concat(r, s)) send m

Protocol model: secret s, key k r <- sample() m <- encrypt(k, concat(r, s)) send m

Protocol implementation:

let r = random() in
let m = encrypt(k, r . s) in
send m

Protocol model: secret s, key k r <- sample() m <- encrypt(k, concat(r, s)) send m

Protocol implementation:

let random () = 0

let r = random() in
let m = encrypt(k, r . s) in
send m

Protocol model:
secret s, key k
r <- sample()
m <- encrypt(k, concat(r, s))
send m</pre>

Protocol implementation:

print(k)
let r = random() in
let m = encrypt(k, r . s) in
send m

Protocol model: secret s, key k r <- sample() m <- encrypt(k, concat(r, s)) send m

Protocol implementation:

let r = random() in
let m = encrypt(k, r . s) in
send (r . s)

A Concrete Example: Modular Arithmetic

• Modular arithmetic is frequently used in cryptographic primitives

Implementing Modular Exponentiation

 $a^b \mod n = a * a * \dots * a \mod n$

- a is a big integer (e.g., $2^{255} 19$)
- Exponentiation is even bigger
- Machine integers are (at most) 64 bits
- How to implement this? Need a bignum library

64 bit	64 bit	64 bit	64 bit

Textbook Multiplication

256-bit Modular Multiplication

256-bit Modular Multiplication

What can go wrong?

- Integer overflow (undefined output)
- Buffer overflow/underflow (memory error)
- Missing carry steps (wrong answer)
- Side-Channel attacks (leaks secrets)

Modular Arithmetic Optimizations

- For many primitives, modular arithmetic dominates the crypto overhead
 - n^2 64-bit multiplications
 - Long intermediate arrays
 - Many carry steps
- Many specific optimizations
 - Use only 51 out of 64 bits to reduce carries
 - Precompute reusable intermediate values
 - Use alternative modular reductions (Montgomery, Barrett)
 - Parallelize (vectorize) multiplication and squaring
- Complex optimizations imply more chances of bugs!

Many Bugs in Optimized Bignum Code

[2013] Bug in amd-64-64-24k Curve25519

...

"Partial audits have revealed a bug in this software (r1 += 0 + carry should be r2 += 0 + carry in amd-64-64-24k) that would not be caught by random tests" – D.J. Bernstein, W.Janssen, T.Lange, and P.Schwabe
[2014] Arithmetic bug in TweetNaCl's Curve25519
[2014] Carry bug in Langley's Donna-32 Curve25519
[2016] Arithmetic bug in OpenSSL Poly1305
[2017] Arithmetic bug in Mozilla NSS GF128

TweetNaCL Arithmetic Bug

```
sv pack25519(u8 *o, const gf n)
  int i,j,b;
  gf m,t;
  FOR(i,16) t[i]=n[i];
  car25519(t);
  car25519(t);
  car25519(t);
  FOR(j,2) {
    m[0]=t[0]-0xffed;
    for(i=1;i<15;i++) {</pre>
      m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
      m[i-1]&=0xffff;
    3
    m[15]=t[15]-0x7fff-((m[14]>>16)&1);
    b=(m[15]>>16)&1;
    m[15]&=0xffff;
   sel25519(t,m,1-b);
  FOR(i,16) {
    o[2*i]=t[i]&0xff;
    o[2*i+1]=t[i]>>8;
                           seb.dbzteam.org
```

This bug is triggered when the last limb n[15] of the input argument n of this function is greater or equal than 0xffff. In these cases the result of the scalar multiplication is not reduced as expected resulting in a wrong packed value. This code can be fixed simply by replacing m[15]&=0xffff; by m[14]&=0xffff; . seb.dbzteam.org

Heartbleed (CVE-2014-0160)

- Major vulnerability in OpenSSL TLS implementation
- Affected 17% of all SSL servers
- "Compromises the secret keys used to identify the service providers and to encrypt the traffic, the names and passwords of the users, and the actual content"
- "Allows attackers to eavesdrop on communications, steal data [...] and impersonate services and users."
- Attacks do not leave a trace

Heartbleed (CVE-2014-0160)

 Missing bound check during a memcpy

response = malloc(length); memcpy(response, recv.heartbeat, length);

response = malloc(length);
if length > ssl_state.heartbeat {return 0;}
memcpy(response, recv.heartbeat, length);

GotoFail (CVE-2014-1266)

```
status SSLVerifyExchange (...) { ...
if ((err = update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;
if ((err = final(&hashCtx, &hashOut)) != 0)
    goto fail;
...
fail:
```

```
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;
```

GotoFail (CVE-2014-1266)

```
status SSLVerifyExchange (...) { ...
if ((err = update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;
if ((err = final(&hashCtx, &hashOut)) != 0)
    goto fail;
```

fail:

...

```
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;
```

```
status SSLVerifyExchange (...) { ...
if ((err = update(&hashCtx, &signedParams)) != 0)
    goto fail;
goto fail;
if ((err = final(&hashCtx, &hashOut)) != 0)
    goto fail;
```

```
fail:
```

...

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

GotoFail (CVE-2014-1266)

- Duplicated goto statement in Apple's TLS implementation
- Bad copy/paste? Faulty merge?
- Impact:
 - Many invalid certificates were accepted
 - Allows using an arbitrary private key for signing or skipping the signing step
 - Enables Man-in-the-Middle attacks
- Many other vulnerabilities: SKIP, FREAK, many memory bugs, correctness issues, infinite loops, ...

Formally Verifying Implementations

- Cryptographic implementations must be correct and secure, but also fast
- Cryptographic implementations are notoriously complex
 - Many tricky optimizations
 - Written in low-level, unsafe languages (C, Assembly)
 - Multiplicity of parameters and variants
- We need strong, formal guarantees about the **safety**, **correctness**, and **security** of cryptographic implementations

The F* Proof Assistant

- A functional programming language (like OCaml, Haskell, F#, ...)
- With support for dependent types (like Coq, Agda), refinement types, ...
- Semi-automated verification by relying on SMT solving (like Dafny, Why3, LiquidHaskell, ...)
- Also offers a metaprogramming and tactic framework (Meta-F*)
- Extraction to OCaml, F#, C (under certain conditions)
- Try it online at https://fstar-lang.org/tutorial/
- Or install it locally: https://github.com/FStarLang/FStar

F* Applications

- Wide range of applications, mostly security-critical
 - HACL*: High-Assurance cryptographic library
 - miTLS: Verified reference implementation of TLS (1.2 and 1.3)
 - Noise*: End-to-end verified Implementations of 59 protocols in the Noise family
 - EverParse: Verified binary parsers and serializers
 - **StarMalloc:** Verified, concurrent, security-oriented memory allocator

The Functional Core of F*

• Recursive Functions

val factorial : nat -> nat

```
let rec factorial n =
    if n = 0 then 1 else n * (factorial (n-1))
```

The Functional Core of F*

Inductive types and pattern-matching

```
type list (a:Type) =
    | Nil : list a
    | Cons : hd: a -> tl: list a -> list a
```

```
map (fun x -> x + 3) [1; 2; 3]
```

Dependent Types in F*

• Types can be indexed by values, or other types

```
val vec (a:Type) : nat -> Type
```

```
type vec (a:Type) =
    | Nil : vec a 0
    | Cons : #n: nat -> hd: a -> tl: vec a n -> vec a (n+1)
```

```
let rec append #a #n #m (v1: vec a n) (v2: vec a m) : vec a (n + m) =
match v1 with
| Nil -> v2
| Cons hd tl -> Cons hd (append tl v2)
```

Dependent Typechecking

let rec append #a #n #m (v1: vec a n) (v2: vec a m) : vec a (n + m) =
match v1 with

| Nil -> v2

| Cons hd tl -> Cons hd (append tl v2)

- Two typechecking goals:
 - v1 = Nil |- v2 : vec a (n + m)
 - v1 = Cons hd tl |- Cons hd (append tl v2) : vec a (n + m)
- Case 1: Goal is vec a m = vec a (n + m)
 - v1 = Nil => n = 0. Goal is 0 + m = m.
 Ok by SMT, using F* extensional type theory

Refinement Types

- A *refinement type* is a base type qualified with a logical formula; the formula can express invariants, preconditions, postconditions
- Refinement types are types of the form **x** : **T** { ϕ } where
 - **T** is the base type
 - **x** refers to the result of the expression, and
 - $oldsymbol{arphi}$ is a logical formula
- The values of this type are the values M of type T such that $\varphi\{M/x\}$ holds

Refinement Types in F*

type nat = n : int { n >= 0 }

```
type pos = n : int { n > 0 }
type neg = n : int { n < 0 }
type empty = n : int { False }</pre>
```

```
type empty_list (a:Type) = I : list a { I == [] }
type nonempty_list (a:Type) = I : list a { I != [] }
```

nonempty_hd [1; 2; 3]	// Returns 1
nonempty_hd []	// Typing error returned by F*

Refinement Subtyping

```
type nat = n : int { n >= 0 }
type pos = n : int { n > 0 }
```

- How to ensure that a given integer can be typed as a nat?
 - Ex: 0:int <: nat
- When given an n : pos, how to use it as a n : nat ?
 - Ex: 2 : pos <: nat
- We need rules for *Refinement Subtyping*

Refinement Subtyping: Elimination

• The type $\mathbf{x} : \mathbf{t} \{ \boldsymbol{\varphi} \}$ is a subtype of \mathbf{t}

For any expression e : (x : t { φ }), it is always safe to eliminate the refinement φ

- Examples:
 - $x : nat (= int \{ x \ge 0 \}) <: x : int$
 - f: list a -> list a, l: nonempty_list a,
 => f l: list a

Refinement Subtyping: Introduction

- For a term ${\bf e:t,t}$ is a subtype of the refinement type ${\bf x:t} \left\{ \, \pmb{\varphi} \, \right\}$ if $\varphi[e/x]$
- Examples:
 - [x] : nonempty_list a
 - If x : even, then x + 1 : odd

Refinement Subtyping

let incr_even (x : even) : odd = x + 1
let incr_odd (x :odd) : even = x + 1

If branch, two goals:

- x % 2 = 0 |= x : int <: x : even
- x % 2 = 0 |= incr_even x <: int

let f (x: int) : int =
 if x % 2 = 0 then incr_even x
 else incr_odd x

Else branch, two goals:

- not (x % 2 = 0) |= x : int <: x : odd
- not (x % 2 = 0) |= incr_odd x <: int

Combining Refinement and Dependent Types

val incr (x:int) : $(y:int{y = x + 1})$

let incr x = x + 1 // Correctly typechecks

let incr x = x + 2 // Subtyping check failed, expected type y:int{y = x + 1}

val append (#a:Type) (l1 l2:list a) : (l:list a{length l == length l1 + length l2})

```
val seq_map (#a:Type) (f: a -> a) (s:seq a) : (s': seq a
length s' == length s \land
\forall (i: nat). i < length s \Rightarrow s'.[i] == f s.[i]})
```

Combining Refinement and Dependent Types

// Sample cryptographic library interface in F*
module AES

type key // Abstract type for secrets
type block = b: bytes{length b == 16}

val encrypt: k: key -> p:block -> c:block {c == AES(k, p)}
val decrypt: k: key -> c:block -> p:block {c == AES(k, p)}

Type Safety

- Safety means that all logical refinements hold at runtime
- Theorem (safety):

For a program A and a type T, if $\emptyset \vdash A : T$, then A is safe

Interfaces and Modular Typing

Seq.fsti

```
val seq (a: Type) : Type
```

```
val index (#a:Type) (s: seq a)
    (i:nat{i < length s}) : a</pre>
```

```
val upd (#a:Type) (s: seq a)
   (i:nat{i < length s}) (v: a) : seq a</pre>
```

let seq (a: Type) = list a Seq.fst

let rec index #a s i =
 if i = 0 then List.hd s else index (List.tl s) (i - 1)

```
let rec upd #a s i v =
    if i = 0 then v :: List.tl s
    else (List.hd s) :: upd (List.tl s) (i-1) v
```

- Interfaces abstract the underlying implementation and definitions
- Interfaces are optional

Modular Typing, Taming Proof Complexity

- Implementation details are not available for verification
- Replacing, e.g., SHA2 by another algorithm does not impact other modules
- Interfaces can be used as abstractions

Modular Typing, Formally

- We write $I_0 \vdash A \sim I$ when, in the typing environment I_0 , the module A is well-typed and exports the interface I
- Theorem (Modular Typing):

For programs A_0 , A, interface I_0 and type T, If $\emptyset \vdash A_0 \sim I_0$ and $I_0 \vdash A : T$, then $\emptyset \vdash A_0 \cdot A : T$

• This gives us safety of the program A_0 . A based on the previous theorem

Assertions and Assumptions

Like many other languages, F* supports assertions and assumptions.

- assert (P) : Introduce a proof obligation for predicate P
- assume (P) : Adds predicate P to the current context.

Examples:

let f (x: int) : unit =let f (x: int) : unit =assume (x % 2 == 0);assume (False);assert ((x + 1) % 2 == 1)assert (x == x + 1)

One can also use admit () to introduce False in the context and admit the remaining of a proof

Intrinsic vs Extrinsic Verification

• Intrinsic Proof: The type of a term includes properties of interest

val list (a:Type) : Type
val length (#a:Type) (l: list a) : nat

val append (#a:Type) (l1 l2: list a) : (l: list a{length l == length l1 + length l2})

- Pros:
 - The proof easily follows the program
 - The property is directly available when calling the function
- Cons:
 - Proving while programming can be tedious
 - The type signature becomes harder to read
 - What about many different properties?

Extrinsic Verification: Lemmas

• F* supports built-in syntax for stating theorems.

val list (a:Type) : Type val length (#a:Type) (l: list a) : nat val append (#a:Type) (l1 l2: list a) : list a

val append_length (#a:Type) (l1 l2: list a) :
 Lemma (length l1 + length l2 == length (append l1 l2))

- Write the length and append functions, and prove the append_length theorem
- Write a list reverse function, and prove that reverse is involutive
- Write a recursive sum function that sums integers from 1 to n, and prove that it is equal to $\frac{n*(n+1)}{2}$

(You will need the command open FStar.Mul to use the * operator)

F*'s Effect System

• By default, F* functions are total

let rec factorial (n:nat) : nat =
 if n = 0 then 1 else n * (factorial (n-1))

F*'s Effect System

• By default, F* functions are total

let rec factorial (n:nat) : Tot nat =
 if n = 0 then 1 else n * (factorial (n-1))

- Tot is an effect, capturing that functions always terminate, and that they have no side-effects.
- What happens if we try to give this weaker type to factorial? let rec factorial (n:int) : Tot int = if n = 0 then 1 else n * (factorial (n-1))

F* Termination Checker

```
let rec factorial (n:int) : Tot int =
    if n = 0 then 1 else n * (factorial (n-1))
```

Subtyping check failed, expected type (x:int{x << n}), got type int</p>

factorial (-1) loops!

Arguments in recursive calls must decrease according to a well-founded ordering <<

Definition: An ordering is well-founded is it does not admit any infinite descending chain

Semantic Termination Checking

- Natural numbers related by < (e.g., 1 << 2 since 1 < 2)
- Inductives related by subterm ordering (e.g., tl << Cons hd tl)
- By default, a recursive function with several arguments uses a lexicographical order on the arguments

```
let rec factorial (n:nat) : Tot nat =
```

```
if n = 0 then 1 else n * (factorial (n-1))
```

- Goal: n − 1 << n.
 - Ordering on naturals is <, SMT can prove automatically n − 1 < n

```
let rec append #a (l1 l2: list a) : list a =
  match v1 with
  | Nil -> v2
  | Cons hd tl -> Cons hd (append tl v2)
```

- Goal: %[tl; l2] << %[l1; l2].
 - tl << l1 or (tl == l1 ∧ l2 << l2)
 - Subterm ordering on l1 gives tl << l1.

let rec ackermann (n m:nat) : Tot nat =
 if m=0 then n + 1
 else if n = 0 then ackermann 1 (m - 1)
 else ackermann (ackermann (n - 1) m) (m - 1)

Does this function pass termination checking?

let rec ackermann (n m:nat) : Tot nat =
 if m=0 then n + 1
 else if n = 0 then ackermann 1 (m - 1)
 else ackermann (ackermann (n - 1) m) (m - 1)

Does this function pass termination checking?

```
let rec ackermann (n m:nat) : Tot nat =
    if m=0 then n + 1
    else if n = 0 then ackermann 1 (m - 1)
    else ackermann (ackermann (n - 1) m) (m - 1)
```

Does this function pass termination checking?

```
let rec ackermann (n m:nat) : Tot nat (decreases %[m; n]) =
  if m=0 then n + 1
  else if n = 0 then ackermann 1 (m - 1)
  else ackermann (ackermann (n - 1) m) (m - 1)
```

F* Effect System: Divergence

- We might want to write non-terminating code:
 - Web servers, operating systems, TLS protocol implementation, ...
- F* provides a built-in *effect* for divergence let rec factorial (n:int) : Dv int = if n = 0 then 1 else n * (factorial (n-1))
- Code must still typecheck, but termination checker is disabled

Divergence: Avoiding inconsistencies

• Termination is required for consistency in proof assistants let rec loop () : Dv False = loop () // This typechecks!

let f (x : int) : Tot (y:int{y == x + 1}) = let _ = loop () in x // What prevents this?

• F* effect system encapsulates effectful code: By default, different effects cannot interact

```
let f (x : int) : Tot (y:int{y == x + 1}) = let _ = loop () in x
```


Subeffecting

- Pure code cannot call potentially divergent code, and only pure code can appear in specifications and proofs.
- But including pure code in divergent code can be useful let rec factorial (n:int) : Dv int = if n = 0 then 1 else n * (factorial (n-1))

We do not want to redefine each basic operator

• F* supports sub-effecting: Tot t <: Dv t

Intrinsic Divergence Verification

let rec factorial (n:int) : Dv int = if n = 0 then 1 else n * (factorial (n-1))

val factorial_lemma (n:int) : Lemma (n \ge 0 => factorial n \ge 0)

• Only pure code can appear in specifications

let rec factorial (n:int) : Dv (y:int{n $\geq 0 \Rightarrow y \geq 0$ }) = if n = 0 then 1 else n * (factorial (n-1))

The GTot effect

• F* also allows writing Ghost code for specifications, proofs, ... which will be erased during extraction.

// Specification of factorial, using natural numbers
val factorial_spec: nat -> GTot nat

// Implementation, using machine integers
val factorial: n:uint64 -> Tot (y:uint64{to_nat y == factorial_spec (to_nat n)})

GTot Subeffecting

- Total code can be used in Ghost functions: Tot t <: GTot t
- Ghost code cannot be used in total functions

• Small subtelty: Ghost code for non-informative types (e.g., ghost values) is allowed (useful for proof purposes)

Refined Computation Types

• So far, refinement in value types:

val incr (n:int) : Tot (y:int{even n => odd y})

• F* also allows refined computation types:

val factorial (n:int) : Pure int (requires $n \ge 0$) (ensures fun y -> y ≥ 0)

- Three elements:
 - Effect (here, Pure), result type (here, int), specification (e.g., pre and post)
- Tot t is defined as an *abbreviation* of Pure t (requires True) (ensures fun _ -> True)

Refined Computation Types

• Other effects are defined in a similar fashion

let rec loop (_:unit) : Div unit (requires True) (ensures fun _ -> False) = loop ()

Dv t == Div t (requires True) (ensures fun _ -> True)

val append_length (#a:Type) (l1 l2: list a) : Ghost unit
 (requires True)
 (ensures fun _ -> length l1 + length l2 == length (append l1 l2))

GTot t == Ghost t (requires True) (ensures fun _ -> True)

Lemma (requires P) (ensures Q) = Ghost unit (requires P) (ensures fun _ -> Q)

Exercises

- Stack, StackClient
- QuickSort: https://fstarlang.org/tutorial/book/part1/part1_quicksort.html#exercises

Working around the SMT solver

- So far, all F* proofs were discharged by SMT.
- Convenient, automated, but:
 - Cannot reason about induction (manual inductive proofs)
 - Struggles with some theories (e.g., complex modular arithmetic)
 - Performance degrades as the context grows (requires clever abstractions/interfaces for large programs)
- F* provides other reasoning facilities: normalization, the calc statement, and tactics

Proof by Normalization

- Dependently typed proof assistants include a *normalizer* which reduces computations during typechecking.
- F* provides access to the normalizer for proof purposes.
 let rec length #a (l: list a) = match | with

 [] -> 0
 hd :: tl -> 1 + length tl

assert (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

Proof by Normalization, Example

```
assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)
```

```
match [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl == 10 \sim
```

```
1 + match [2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl == 10 \sim
```

• • •

10 == 10 ~

True

• Extremely useful for proofs involving recursive functions and concrete terms

Proof by Normalization

• The normalizer only performs reductions, it does not use logical facts in the context

assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)

let f (l:list a { length l == 10}) = assert_norm (length l == 10)

- The normalizer cannot reduce symbolic terms
- The normalizer can be fine-tuned (only include certain reduction steps, only unfold some definitions, definitions with a given attribute, ...)

Calc Statement

• Many (mathematical) proofs consist of a succession of equalities/comparisons:

 $(a + b * 2^{c}) * 2^{d} == a * 2^{d} + b * 2^{c} * 2^{d} == a * 2^{d} + b * 2^{c+d}$

• F* provides a construct to emulate this:

```
calc (==) {
  e1;
  (==) { // proof of e1 == e2 }
  e2;
  (==) { // proof of e2 == e3 }
  e3;
}
```

```
calc (≥) {
  e1;
  (==) { // proof of e1 == e2 }
  e2;
  (≥) { // proof of e2 ≥ e3 }
  e3;
}
```

F* Tactics

- F* provides a metaprogramming and tactics framework, called Meta-F* assert (pow2 19 == 524288) by (compute (); dump "after compute")
- Works well for:
 - Small rewritings/goal manipulation
 - Specific types of goals (separation logic, ring normalization)
 - F* goal inspection
- Not recommanded as the main proof technique, better to use as a help to SMT

Exercises

• Arithmetic proofs using calc