
Side-Channel Attacks and Non-Interference

Aymeric Fromherz
Inria Paris,

MPRI 2-30

1

Outline

• Last week:
• Safety and correctness bugs in cryptographic implementations

• Introduction to the F* proof assistant

• Today:
• Side-channel attacks

• Establishing non-interference in implementations

2

Leaking Secrets

3

secret s, key k

m <- encrypt(k, s)

send m

Assumption: k is secret

Implementation:

print(k)

let m = encrypt(k, s) in

send(m)

Indirectly Leaking Secrets

4

if k = 0xDEADBEEF then

print(foo)

else

print(bar)

let m = encrypt(k, s) in

send(m)

Leaking Information through Observations

5

Possible attack:
• Measure execution time
• Observe longer execution time when msg has the same length as pwd
• Observe longer execution time when msg and pwd match on the first k

characters

let verify_pwd(string msg, string pwd) =

 if msg.length <> pwd.length then return false

 for (k = 0; k < msg.length; k ++) {

 if msg[k] <> pwd[k] then return false

 }

 return true

Side-Channel Attacks

• A side-channel attack exploits physical observations due to running a
program to infer information about secrets
• Execution time

• Power consumption

• Cache patterns

• Keyboard sounds

• …

• Can leak cryptographic keys, plaintexts, state information, …

6

Timing Attacks [Kocher, CRYPTO’ 96]

• First published side-channel attack on cryptography

• Focuses on modular exponentiation

• Able to find fixed Diffie-Hellman exponents, factor RSA keys, …

• Let’s look at this on RSA

7

Background on RSA [Rivest, Shamir, Adleman, 78]

• Public-key encryption algorithm (can also be used for signing)

• Relies on a public key (N, e), and a private key d

• N is the product of two large prime numbers p and q

• e and d are related through ed = 1 mod (p - 1)(q – 1)

• Security relies on p and q being unknown to the attacker (i.e.,
factoring large numbers is hard)

8

RSA Encryption

• Public key (N, e), private key d, plaintext M

• Encryption: Ciphertext is 𝑀𝑒 𝑚𝑜𝑑 𝑁

• Decryption: We receive a ciphertext C. We return 𝐶𝑑 𝑚𝑜𝑑 𝑁

• Correctness: For any plaintext M, decrypt(encrypt(M)) == M
Mathematically: (𝑀𝑒)𝑑 𝑚𝑜𝑑 𝑁 = 𝑀 𝑚𝑜𝑑 𝑁
Proof relies on Fermat’s little theorem

• Can also be used for signing:
• Send 𝑀, 𝑀𝑑 𝑚𝑜𝑑 𝑁
• Anybody can check that (𝑀𝑑)𝑒 𝑚𝑜𝑑 𝑁 = 𝑀 𝑚𝑜𝑑 𝑁

9

Timing Attack on RSA

• Attacker goal: Guess private key d

• Attacker capabilities: Can query decryption for any ciphertext C

10

𝐶𝑑 𝑚𝑜𝑑 𝑁 implementation (assume d contains w bits):

x = 1

for k = 0 to w – 1 do

if d[k] = 1 then x = xC mod N

x = 𝑥2 mod N

return x

Timing Attack on RSA
Example: Take d = 10 (binary: 1010)

(Iteration 0): d[0] = 0

 x = 𝑥2 mod N // = 1 mod N

(Iteration 1): d[1] = 1

 x = xC mod N // = C mod N

x = 𝑥2 mod N // = 𝐶2 mod N

(Iteration 2): d[2] = 0

x = 𝑥2 mod N // = 𝐶4 mod N

(Iteration 3): d[3] = 1

 x = xC mod N // = 𝐶5 mod N

x = 𝑥2 mod N // = 𝐶10 mod N
11

x = 1

for k = 0 to w – 1 do

if d[k] = 1 then x = xC mod N

x = 𝑥2 mod N

return x

Timing Attack on RSA

12

x = 1

for k = 0 to w – 1 do

if d[k] = 1 then x = xC mod N

x = 𝑥2 mod N

return x

• Attacker goal: Guess d[0]

• Assumption: y mod N is slower for
some values of y
• Ex: When y >= N depending on mod impl

Attack:
• Call decrypt with two ciphertexts 𝐶1, 𝐶2, such that 𝐶1

2 < 𝑁 <= 𝐶2
2

• If execution times differ, then d[0] = 1, else d[0] = 0
• In practice, statistical analysis with a family of 𝐶1, 𝐶2 to account for

noise, network delay, …

Timing attack on RSA

• Assume d[0], … d[k-1] are known

• Attacker goal: Guess d[k]

• Assumption: y mod N is slower when
𝑁 <= y

13

for k = 0 to w – 1 do

if d[k] = 1 then x = xC mod N

x = 𝑥2 mod N

return x

Attack:
• The attacker can compute the first k iterations for any ciphertext C
• Call decrypt with two ciphertexts 𝐶1, 𝐶2, such that 𝑥1

2 < 𝑁 <= 𝑥2
2

where 𝑥1, 𝑥2 are intermediate results after k iterations for 𝐶1, 𝐶2

• If execution times differ, then d[k] = 1, else d[k] = 0

Timing Attack on RSA

• Recursively applying this methodology, we can guess all bits of d

• Original results:
• 128-bit key could be broken with about 10,000 samples (4 bits/sec)

• 512-bit key coud be broken in a few minutes with ~350,000 measurements

• Further attacks on optimized RSA implementations intended to
circumvent timing attacks also shown effective

Remote Timing Attacks are Practical, Brumley and Boneh, USENIX’ 03

14

Cache-based Side Channel Attacks

• Exploit timing differences due to accesses to memory caches

• Especially demonstrated on the AES block cipher

Bernstein, D. J. (2005). Cache-timing attacks on AES.

Osvik, D. A., Shamir, A., & Tromer, E. (2006). Cache attacks and
countermeasures: the case of AES.

Bonneau, J., & Mironov, I. (2006). Cache-collision timing attacks against AES.

Tromer, E., Osvik, D. A., & Shamir, A. (2010). Efficient cache attacks on AES, and
countermeasures

15

Background on AES

• Block cipher: transforms a fixed-size plaintext (128 bits) into a
ciphertext using a secret key k
• Many encryption modes to support arbitrary-sized plaintexts (AES-GCM, AES-

CTR, …)

• Initially, xor plaintext with key

• Followed by several rounds of encryption operating on a state of 16
bytes

16

𝑝0 𝑝4 𝑝8 𝑝12

𝑝1 𝑝5 𝑝9 𝑝13

𝑝2 𝑝6 𝑝10 𝑝14

𝑝3 𝑝7 𝑝11 𝑝15

𝑐0 𝑐4 𝑐8 𝑐12

𝑐1 𝑐5 𝑐9 𝑐13

𝑐2 𝑐6 𝑐10 𝑐14

𝑐3 𝑐7 𝑐11 𝑐15

AES Rounds

AES Round

Several Successive Transformations:

• Substitute bytes through affine transformation

(SubBytes)

• Different shifts in each row (ShiftRows)

• Apply linear transformation to each column

 (MixColumns):

• Xor with (a derived sub)key (AddRoundKey): 𝑐𝑖 = 𝑝𝑖
′′ ۩ 𝑘𝑖

17

𝑝0 𝑝4 𝑝8 𝑝12

𝑝1 𝑝5 𝑝9 𝑝13

𝑝2 𝑝6 𝑝10 𝑝14

𝑝3 𝑝7 𝑝11 𝑝15

𝑝′0 𝑝′4 𝑝′8 𝑝′12

𝑝′1 𝑝′5 𝑝′9 𝑝′13

𝑝′2 𝑝′6 𝑝′10 𝑝′14

𝑝′3 𝑝′7 𝑝′11 𝑝′15

𝑝′0 𝑝′4 𝑝′8 𝑝′12

𝑝′5 𝑝′9 𝑝′13 𝑝′1
𝑝′10 𝑝′14 𝑝′2 𝑝′6

𝑝′15 𝑝′3 𝑝′7 𝑝′11

𝑝′′0 𝑝′′4 𝑝′′8 𝑝′′12

𝑝′′1 𝑝′′5 𝑝′′9 𝑝′′13

𝑝′′2 𝑝′′6 𝑝′′10 𝑝′′14

𝑝′′3 𝑝′′7 𝑝′′11 𝑝′′15

Optimized AES Round

• The first three transformations (SubBytes, ShiftRows, MixColumns)
only depend on the input state

• The result can be precomputed for all 𝑝𝑖 , and stored in tables 𝑇𝑘.

Optimized AES round:

18

𝑥0 𝑥4 𝑥8 𝑥12

𝑥1 𝑥5 𝑥9 𝑥13

𝑥2 𝑥6 𝑥10 𝑥14

𝑥3 𝑥7 𝑥11 𝑥15

𝑇0 𝑥0 ⊕ 𝑇1 𝑥5 ⊕ 𝑇2 𝑥10 ⊕ 𝑇3 𝑥15 ⊕ {𝑘0, 𝑘1, 𝑘2, 𝑘3}

𝑇0 𝑥4 ⊕ 𝑇1 𝑥9 ⊕ 𝑇2 𝑥14 ⊕ 𝑇3 𝑥3 ⊕ {𝑘4, 𝑘5, 𝑘6, 𝑘7}

𝑇0 𝑥8 ⊕ 𝑇1 𝑥13 ⊕ 𝑇2 𝑥2 ⊕ 𝑇3 𝑥7 ⊕ {𝑘8, 𝑘9, 𝑘10, 𝑘11}

𝑇0 𝑥12 ⊕ 𝑇1 𝑥1 ⊕ 𝑇2 𝑥6 ⊕ 𝑇3 𝑥11 ⊕ {𝑘12, 𝑘13, 𝑘14, 𝑘15}

Cache Model (Simplified)

19

x = *p;

…

y = *p;

Fetch

Fetch

Cache Model (Simplified)

20

x = *p;

…

y = *p;

Fetch in memory

p -> v
Store in cache

Fetch in cache

• Accesses to the cache are faster than to main memory
• Storage in the cache is smaller than memory
• When the cache is full, storing a new value removes older mappings

AES First Round Cache Attack

• For the first round, the inputs 𝑥𝑖 are equal to 𝑝𝑖 ۩ 𝑘𝑖

• We are accessing memory at address 𝑇𝑘 𝑥𝑖

• The attacker controls input p

• We access 𝑇0 𝑥0 , 𝑇0 𝑥4 , 𝑇0 𝑥8 , 𝑇0 𝑥12

• If (e.g.) 𝑥0 = 𝑥4, execution time is lower as 𝑇0 𝑥4 is stored in cache
when accessing 𝑇0 𝑥0

• Trying different samples, we can find values of 𝑝0, 𝑝4, such that 𝑥0 =
 𝑝0 ۩ 𝑘0 = 𝑥4 = 𝑝4 ۩ 𝑘4

• We can determine the value of 𝑘0 ۩ 𝑘4

21

AES Cache-Based Attacks

• Similar attacks allow to infer more information about the key, leading
to key retrieval

• Omitted details
• Attacker needs to control the initial state of the cache

• Cache does not allow to reason about lower bits of accessed addresses

• Other computations can lead to timing differences

• There exists technical solutions for all of this

22

Speculative Side-Channel Attacks: Spectre

• Assume that all values in a are in [0; b.length[

• Can this code lead to a buffer overflow?

• In theory, no, all accesses are in bound, but…

23

if (0 <= x < a.length) {

i = a[x];

r = b[i];

}

CPU Branch Prediction

• CPU instruction pipeline: Fetch, Decode, Execute, Access Memory,
Write results in registers

• Modern CPUs anticipate and start executing next instructions early

• When branching occur, CPUs “guess” which branch is most likely to
start the instruction pipeline

• When wrong, rollback to earlier CPU state

• Problem: Rollback does not include the entire microarchitectural
state, e.g., cache state

24

Speculative Side-Channel Attacks: Spectre

• Run program with x = a.length + n

• CPU predicts that the if branch will be taken

• Pre-executes the two memory accesses

• When rolling back, the cache contains a
mapping for i

25

if (0 <= x < a.length) {

i = a[x];

r = b[i];

}

• Attack:
• Train branch predictor for if branch

• Pick n such that a[a.length + n] contains a secret

• Launch a cache side channel attack to infer i

Physical Side-Channel Attacks

• Similar attacks exploit the power consumption or electromagnetic
leakage.

• Ex: Power consumption of a given instruction is correlated to the
number of bits set in its operands (Hamming weight model)

• Infer information about secrets manipulated by the program

• Require some access to the device

26

Video-Based Cryptanalysis: Extracting Cryptographic Keys from Video
Footage of a Device’s Power LED, Nassi et al., 2023

• Core idea:
• Direct access to device is not needed, a video of its use might be enough

• The power consumption of a device affects the brightness of its power LED

• In some cases, this is sufficient to launch a remote power-based side-channel
attack

• Today: Focus on digital side-channel attacks

Recent Physical Side-Channel Attacks

27

Non-Interference [Goguen-Meseguer, 82]

• Goal: We want to ensure that secret data does not impact public
observations available to an attacker

• Information-flow property based on secrecy labels:
• High (H) == Secret data

• Low (L) == Public data

• High-level idea: There is no flow from high data to low data

28

Non-Interference, Formally

For a given program p,

∀ (𝑠1 𝑠2∶ 𝑠𝑡𝑎𝑡𝑒),

𝑠1| 𝐿 = 𝑠2| 𝐿 ⇒ // States agree on low values

 𝑠1 →𝑝
∗ 𝑠1

′ ⇒ // Executing p in 𝑠1 yields 𝑠1
′

 𝑠2 →𝑝
∗ 𝑠2

′ ⇒ // Executing p in 𝑠2 yields 𝑠2
′

𝑠1| 𝐿
′ = 𝑠2| 𝐿

′ // Results agree on low values

29

Non-Interference Example

30

if x = 1 then y := 1 else y := 0

• If x : H, y : H: No low values, non-interference

• If x : L, y : L: Initial agreement on x, non-interference

• If x : L, y : H: Initial agreement on x, non-interference

• If x : H, y : L: Observing the result of y leaks information about x

• Goal: Statically ensure noninterference

Non-Interference by Typing [Volpano et al., 96]

31

• Data types s are security labels (in our case, H and L)
• Each expression and command is annotated with a security label

Typing Judgement

• 𝜆 is a memory store: It associates to each location its security label

• 𝛾 is a variable environment: It maps variables to their type

• Under this context, this judgement gives program p the type 𝜌

32

Typing Rules

33

Typing Rules

34

Typing Rules

35

Typing Example

36

if x = 1 then y := 1 else y := 0

Assume that x : H var, y : H var

Goal : Give this program the type H cmd

Typing Example

37

Goal: x: H var, y: H var ⊢ if x = 1 then y := 1 else y := 0 : H cmd

Need to prove
• x: H var, y : H var ⊢ x = 1 : H

• x: H var, y : H var ⊢ y := 1 : H cmd

• x: H var, y : H var ⊢ y := 0 : H cmd

Typing Example

38

Goal: x: H var, y: H var ⊢ x = 1 : H

Need to prove
• x: H var, y : H var ⊢ 1 : H

• x: H var, y : H var ⊢ x : H

Typing Example

39

Goal: x: H var, y : H var ⊢ y := 1 : H cmd

Need to prove
• x: H var, y : H var ⊢ y : H var

• x: H var, y : H var ⊢ 1 : H

Label Subtyping

• The type system is sufficient when x and y have the same label

• What about x : L var, y : H var ?

• The If rule requires the condition and the commands to have the
same label!

40

Label Subtyping

41

• We consider that label L is “lower” than label H
• Models that a public value can always be hidden as secret

• Given x = 0 : L, this allows us to derive x = 0 : H

Label Subtyping

• Different variance compared to expression rule

• Intuitively: If a program is “secure” in a context which might depend
on secret data, then it is also in a less privileged context

• Alternative proof: y := 1 : H cmd => y := 1 : L cmd
42

Exercises

• For the following programs, either give a typing derivation showing
non-interference, or explain why the program does not typecheck

• x: L var, y: H var ⊢ while (x < 10) do (x := x + 1; y := y + 1)

• x: H var, y: L var ⊢ while (x < 10) do
 if y = 2 then x := x + 1 else x := x + 2

43

Back to Digital Side-Channels

• The typing approach so far avoids indirect leaks, e.g., by observing
public values

• However, it allows typechecking if key = … then x = …, which leaks the
key by observing the timing of the attack

• Need to extend formalism beyond leaking values!

44

Instrumenting Semantics

• Previously: 𝑠1 →𝑝
∗ 𝑠1

′

• We record traces containing all branching and memory accesses

 (Trace) 𝑙 ::= 𝜀 | Branch (b) . 𝑙 | Access(n) . 𝑙

𝑠1 →𝑝
∗ 𝑠1

′ , 𝑙1

When executing if b then p else p’ , we record Branch(b)

When executing a[n], we record Access(n)

45

Non-Intereference with Observations

46

For a given program p,

∀ (𝑠1 𝑠2∶ 𝑠𝑡𝑎𝑡𝑒),

𝑠1| 𝐿 = 𝑠2| 𝐿 ⇒ 𝑠1 →𝑝
∗ 𝑠1

′ , 𝑙1 ⇒ 𝑠2 →𝑝
∗ 𝑠2

′ , 𝑙2 ⇒

𝑠1| 𝐿
′ = 𝑠2| 𝐿

′ ∧ 𝑙1 = 𝑙2

Captures that the program executes the same program paths, and
performs identical memory (and hence cache) accesses for the same
attacker-controlled inputs

The “Constant-Time” Programming Discipline

Cryptographic implementations must follow a “constant-time”
programming discipline, which forbids

• Branching involving secrets

• Using instructions which execute in variable time with secrets (e.g.,
division)

• Accessing memory based on secret indices

47

The “Constant-Time” Programming Discipline

• Is this enough?

System-level Non-interference for Constant-time Cryptography, Barthe et al., CCS’ 14
studies this formally

• Easy programming discipline to follow?
Jan 2024:
https://kyberslash.cr.yp.to/ , https://cryspen.com/post/ml-kem-implementation/

KyberSlash: Exploiting secret-dependent division timings in Kyber implementations, Bernstein et al., CHES’ 25

• We need tools to enforce this

48

https://kyberslash.cr.yp.to/
https://cryspen.com/post/ml-kem-implementation/

Non-Interference by Typing Abstraction

• Remember from last week:

• Client modules only have access to the interface

• Underlying implementation is hidden (true for other languages supporting
abstraction)

49

Hash.fsti

val hash

Hash.fst

let hash = sha2

HKDF.fst

let hkdf = …. Hash.hash …

Non-Interference by Typing Abstraction

50

SUInt32.fsti

val suint32: Type // Abstract type for secret uint32 integers

val (+) : suint32 -> suint32 -> suint32

val (*) : suint32 -> suint32 -> suint32

// Non-constant time operations are not exposed

// val (/) : suint32 -> suint32 -> suint32

Implementing Abstract Secret Integers

51

SUInt32.fst

let suint32 = uint32 // Underlying definition is simply standard integers

let (+) n1 n2 = n1 + n2

let (*) n1 n2 = n1 * n2

• Abstract type for opaque “secret integers”

• Exposes arithmetic and bitwise constant-time operations, but not comparison,
division

• After extraction, compiled to standard integer, no runtime cost

Using Secret Integers

52

n1, n2 : suint32 // Secret integers

if n1 > n2 then …

val index (b: array uint8) (i: uint32) : …

let x = b.[n1] in …

• Can be seen as an extension of previous typing discipline

No comparison defined for secret integers

Expected type uint32, got type suint32

Speculative Execution

if i < 10 {

 x = p[i];

}

w[x] = 0;

Spectre v1-read
53

p[10] s[5]

if i < 5 {

 s[i] =sec;

}

x = p[0];

w[x] = 0;

Spectre v1-write

s[5] p[10]

Protecting Against Speculative Execution

54

if i < 10 {

 x = p[i];

}

w[x] = 0;

if i < 10 {

 fence();

 x = p[i];

}

w[x] = 0;

Need to insert a fence at each branch

Large overhead

Protecting Against Speculative Execution

55

if i < 10 {

 x = p[i];

}

w[x] = 0;

if i < 10 {

 x = p[i];

 protect(x);

}

w[x] = 0;

if i < 10 {

 x = p[i];

}

protect(x);

w[x] = 0;

Protect Semantics

• We rely on a specific variable, ms

y = protect(x, ms): “conditional masking”

• -1 if ms = -1

• no-op otherwise

Need to set ms when misspeculating: set_ms(cond)

• set_ms(cond) sets ms to -1 if cond is false

• no-op otherwise

56

Protecting Against Speculative Execution

57

if i < 10 {

 x = p[i];

}

w[x] = 0;

if i < 10 {

 set_ms(i < 10);

 x = p[i];

 x = protect(x, ms);

}

w[x] = 0;

How to ensure this protects against speculative attacks?

A Type-System for Speculative Constant-Time
[Shivakumar et al., 23]

• Type systems for constant-time had one security label, L or H

• Idea: Extend it with a pair of labels 𝜏𝑛, 𝜏𝑠 which are either L or H

• 𝜏𝑛 : security label for “normal” executions

• 𝜏𝑠 : security label for speculative executions

58

Typing Rules

• L ∪ H = H, L ∪ L = L, H ∪ H = H

• (𝜏𝑛, 𝜏𝑠) ∪ (𝜏𝑛′, 𝜏𝑠′) = (𝜏𝑛 ∪ 𝜏𝑛′, 𝜏𝑠 ∪ 𝜏𝑠′)

59

Typing Rules

60

• L ≤ H

• (𝜏𝑛, 𝜏𝑠) ≤ (𝜏𝑛′, 𝜏𝑠′) ⟺ 𝜏𝑛 ≤ 𝜏𝑛
′ ∧ 𝜏𝑠 ≤ 𝜏𝑠′

Typing Rules: Speculative Load

61

Typing Rules: Protect

y = protect(x, ms)

Recall: Behaviour depends on ms!

Conceptually, “y is protected against speculative attacks if ms
accurately models the current state of misspeculation”

Need to keep track of the state of ms!

62

Typing Rules: Execution Modes

Idea: Keep track of the relationship between ms and misspeculation in
a mode Σ

Σ := | unk | 𝐦𝐬 | 𝐦𝐬|𝑒

• 𝐦𝐬: If misspeculation, then ms = -1

• unk: No information about the current state

• 𝐦𝐬|𝑒 : If misspeculation and e is true, then ms = -1

63

Typing Rules: Protect and Set-ms

64

Typing Rules: Load

65

Typing Rules: Seq and Assign

66

Typing Rules: Branching

• Σ|𝑏 = 𝐦𝐬|𝑏 if Σ = 𝐦𝐬, otherwise unk

• Σ1 ∩ Σ2 = Σ1 if Σ1 = Σ2, otherwise unk

67

Branching Example

{ 𝐦𝐬 }

if i < 10 {

 { 𝐦𝐬| 𝒊<𝟏𝟎 }

 set_ms(i < 10);

 { 𝐦𝐬 }

After set_ms, ms correctly models misspeculation

Can be safely used for speculative protection

68

Speculative Stores

• We can store a value with label 𝜏 in an array with label 𝜏’ if 𝜏 ≤ 𝜏’

• Implicit assumption: accesses are in bound

• Speculative executions break this assumption!

69

if i < 5 {

 s[i] =sec;

}

x = p[0];

w[x] = 0;

s[5] p[10]

i = 5

Typing Rules: Store

70

Exercises

• Starting from ms, either provide a typing derivation or explain typing failures for
the following programs. All variables but s and sec have type L, L

71

Typing Limitations

• Only guarantees resistance against timing, cache-based, and
speculative (with extension) side-channels

• Only provides guarantees within the semantics of the source
language (C, OCaml, …)

• Compilers can reintroduce side-channels

72

Compiler-Induced Side Channels

73

let login() =

x = read_passwd()

res = check_pwd(x)

x = 0

return res

Unused assignment

let login() =

x = read_passwd()

res = check_pwd(x)

return res

Compile

Password can leak after execution!

Crypto Compiler-Induced Side Channels

74

Assume b is secret

if b then r := x else r := y

int mask = create_mask(b);

r := (x & mask) | (y & ~mask);

Rewrite into
constant-time version

: Did you mean

if b then r := x else r := y

Avoiding Compiler-Induced Side-Channels

• Use a constant-time preserving compiler
 Formal verification of a constant-time preserving C compiler, Barthe et al.,
POPL’ 20

 Preservation of Speculative Constant-Time by Compilation, Arranz Olmos et
al., POPL’ 25

• Impressive, but heavy effort needed

• How to reach performance of industrial compilers?

• How to scale to variety of backends and architectures?

75

Avoiding Compiler-Induced Side Channels

• Analyze binary code after compilation
 Verifying constant time implementations, Almeida et al., USENIX’ 16

 BINSEC/REL: Efficient Relational Symbolic Execution for Constant-Time at
 Binary-Level, Daniel et al., S&P’ 20

• How to determine which parts of memory/registers should be secret?

• How to precisely analyze binary code, and retrieve semantic structure?

• PhD offer: Leverage source semantic information in verified crypto
code to improve binary analysis (combination of HACL* and BINSEC)

76

	Slide 1: Side-Channel Attacks and Non-Interference
	Slide 2: Outline
	Slide 3: Leaking Secrets
	Slide 4: Indirectly Leaking Secrets
	Slide 5: Leaking Information through Observations
	Slide 6: Side-Channel Attacks
	Slide 7: Timing Attacks [Kocher, CRYPTO’ 96]
	Slide 8: Background on RSA [Rivest, Shamir, Adleman, 78]
	Slide 9: RSA Encryption
	Slide 10: Timing Attack on RSA
	Slide 11: Timing Attack on RSA
	Slide 12: Timing Attack on RSA
	Slide 13: Timing attack on RSA
	Slide 14: Timing Attack on RSA
	Slide 15: Cache-based Side Channel Attacks
	Slide 16: Background on AES
	Slide 17: AES Round
	Slide 18: Optimized AES Round
	Slide 19: Cache Model (Simplified)
	Slide 20: Cache Model (Simplified)
	Slide 21: AES First Round Cache Attack
	Slide 22: AES Cache-Based Attacks
	Slide 23: Speculative Side-Channel Attacks: Spectre
	Slide 24: CPU Branch Prediction
	Slide 25: Speculative Side-Channel Attacks: Spectre
	Slide 26: Physical Side-Channel Attacks
	Slide 27: Recent Physical Side-Channel Attacks
	Slide 28: Non-Interference [Goguen-Meseguer, 82]
	Slide 29: Non-Interference, Formally
	Slide 30: Non-Interference Example
	Slide 31: Non-Interference by Typing [Volpano et al., 96]
	Slide 32: Typing Judgement
	Slide 33: Typing Rules
	Slide 34: Typing Rules
	Slide 35: Typing Rules
	Slide 36: Typing Example
	Slide 37: Typing Example
	Slide 38: Typing Example
	Slide 39: Typing Example
	Slide 40: Label Subtyping
	Slide 41: Label Subtyping
	Slide 42: Label Subtyping
	Slide 43: Exercises
	Slide 44: Back to Digital Side-Channels
	Slide 45: Instrumenting Semantics
	Slide 46: Non-Intereference with Observations
	Slide 47: The “Constant-Time” Programming Discipline
	Slide 48: The “Constant-Time” Programming Discipline
	Slide 49: Non-Interference by Typing Abstraction
	Slide 50: Non-Interference by Typing Abstraction
	Slide 51: Implementing Abstract Secret Integers
	Slide 52: Using Secret Integers
	Slide 53: Speculative Execution
	Slide 54: Protecting Against Speculative Execution
	Slide 55: Protecting Against Speculative Execution
	Slide 56: Protect Semantics
	Slide 57: Protecting Against Speculative Execution
	Slide 58: A Type-System for Speculative Constant-Time [Shivakumar et al., 23]
	Slide 59: Typing Rules
	Slide 60: Typing Rules
	Slide 61: Typing Rules: Speculative Load
	Slide 62: Typing Rules: Protect
	Slide 63: Typing Rules: Execution Modes
	Slide 64: Typing Rules: Protect and Set-ms
	Slide 65: Typing Rules: Load
	Slide 66: Typing Rules: Seq and Assign
	Slide 67: Typing Rules: Branching
	Slide 68: Branching Example
	Slide 69: Speculative Stores
	Slide 70: Typing Rules: Store
	Slide 71: Exercises
	Slide 72: Typing Limitations
	Slide 73: Compiler-Induced Side Channels
	Slide 74: Crypto Compiler-Induced Side Channels
	Slide 75: Avoiding Compiler-Induced Side-Channels
	Slide 76: Avoiding Compiler-Induced Side Channels

