Verifying Low-Level Cryptographic Code: HACL*

Aymeric Fromherz
Inria Paris,
MPRI 2-30
Outline

• Last week:
 • Side-Channel Attacks
 • Statically preventing them through noninterference

• Today:
 • Back to verifying implementations (and F*)
 • Reasoning about low-level code
 • Proof engineering to scale verification
Reminder: The F* Proof Assistant

- A functional programming language
- With support for dependent types, refinement types, effects, ...
- Semi-automated verification by relying on SMT solving
- Extraction to OCaml, F#, C (under certain conditions)

- Try it online at https://fstar-lang.org/tutorial/
- Or install it locally: https://github.com/FStarLang/FStar
Reminder: The F* Effect System

• Separates between
 • Total functions: \texttt{Tot t}
 • Ghost functions: \texttt{GTot t}
 • Possibly non-terminating functions: \texttt{Dv t}

• Can include refinements for specifications
 \begin{verbatim}
 val factorial (n:int) : Pure int (\text{requires } n \geq 0) (\text{ensures } \text{fun } y \to y \geq 0)
 val append_length (#a:Type) (l1 l2: list a) : Ghost unit
 (\text{requires } \text{True})
 (\text{ensures } \text{fun } _ \to \text{length } l1 + \text{length } l2 == \text{length } (\text{append } l1 l2))
 \end{verbatim}
Stateful F* Programs

• F* provides a built-in effect for modeling and reasoning about stateful programs:
 \[\text{ST } t \ (\text{requires } \text{fun } h \rightarrow \text{pre } h) \ (\text{ensures } \text{fun } h_0 \text{ r } h_1 \rightarrow \text{post } h_0 \text{ r } h_1) \]

• Reason about state using a standard Hoare logic (requires/ensures)
• ST models a state with garbage-collected references
• This model is in a partial correctness setting:
 • Pure \(t <: \text{ST } t \), and Div \(t <: \text{ST } t \)
Stateful Programs: An Example

val incr (r:ref int) : ST unit
 (requires fun h -> True)
 (ensures fun h0 v h1 -> 1 + sel h0 r == sel h1 r)

let incr (r:ref int) = r := !r + 1
Specifying the Heap

val heap : Type
val ref : Type -> Type

val sel : #a:Type -> heap -> ref a -> GTot a

effect ST (a: Type) (pre: heap -> Type) (post: heap -> a -> heap -> Type) = ...
Heap Operations

val (!) (r:ref int) : ST int
 (requires fun h -> True)
 (ensures fun h0 v h1 -> h0 == h1 ∧ sel h0 r == v)

val (:=) (r:ref int) (v: int) : ST unit
 (requires fun h -> True)
 (ensures fun h0 _ h1 -> sel h1 r == v)
Reasoning about Framing

\[
\text{val swap (r1 r2:ref int) : ST unit}
\]

\[
\text{(requires fun h -> True)}
\]

\[
\text{(ensures fun h0 _ h1 ->}
\]

\[
\text{sel h0 r1 == sel h1 r2 \land sel h0 r2 == sel h1 r1)}
\]

let swap r1 r2 =

let v1 = !r1 in let v2 = !r2 in

r1 := v2; r2 := v1

• Correct? What about aliasing? What part of memory does a write impact?
The Modifies Clause

```ocaml
val addr_of : #a:Type -> ref a -> GTot nat

let modifies (s:set nat) (h0 h1 : heap) = forall a (r:ref a).
    not (addr_of r `mem` s) ==> sel h1 r == sel h0 r

val (:=) (r:ref int) (v: int) : ST unit
    (requires fun h -> True)
    (ensures fun h0 _ h1 ->
        modifies {addr_of r} h0 h1 ∧
        sel h1 r == v)
```
The Modifies Clause

```plaintext
val addr_of : #a:Type -> ref a -> GTot nat

let modifies (s:set nat) (h0 h1 : heap) = forall a (r:ref a).
    not (addr_of r `mem` s) ==> sel h1 r == sel h0 r

val (:=) (r:ref int) (v: int) : ST unit
    (requires fun h -> True)
    (ensures fun h0 _ h1 ->
        modifies !{r} h0 h1 ∧
        sel h1 r == v)
```

Lighter notation for location sets
Applying the Modifies Clause, Intuitively

```ocaml
val swap (r1 r2:ref int) : ST unit
    (requires fun h -> addr_of r1 <> addr_of r2)
    (ensures fun h0 _ h1 ->
        sel h0 r1 == sel h1 r2 ∧ sel h0 r2 == sel h1 r1)

let swap r1 r2 =
    let v1 = !r1 in let v2 = !r2 in // Does not modify memory
    r1 := v2; // Only modifies location r1, r2 is left unchanged
    r2 := v1  // Only modifies location r2, r1 is left unchanged
```
Monadic Effects

• The ST effect can be seen as a state monad, with a bind operator

\[
G \vdash e_1 : ST \Gamma_1 \quad \text{(requires } (\text{fun } h_0 \to \text{pre } h_0) \text{)} \quad \text{(ensures } (\text{fun } h_0 \, x_1 \, h_1 \to \text{post } h_0 \, x_1 \, h_1)\text{)}
\]

\[
G, x_1:\Gamma_1 \vdash e_2 : ST \Gamma_2 \\
(\text{requires } (\text{fun } h_1 \to \exists h_0. \text{post } h_0 \, x_1 \, h_1)) \\
(\text{ensures } (\text{fun } h_1 \, x_2 \, h_2 \to \text{post’ } h_1 \, x_2 \, h_2))
\]

\[
G \vdash \text{let } x_1 = e_1 \text{ in } e_2 : ST \Gamma_2 \\
(\text{requires } (\text{fun } h_0 \to \text{pre})) \\
(\text{ensures } (\text{fun } h_0 \, x_2 \, h_2 \to \exists x_1 \, h_1. \text{post } h_0 \, x_1 \, h_1 \land \text{post’ } h_1 \, x_2 \, h_2))
\]
Consequence Rule

G |- e1 : ST t1 (requires (fun h0 -> pre h0)) (ensures (fun h0 x1 h1 -> post h0 x1 h1))
G |= forall h0. pre’ h0 => pre h0
G |= forall h0 x1 h1. post h0 x1 h1 => post’ h0 x1 h1

G |- e1 : ST t1 (requires (fun h0 -> pre’ h0)) (ensures (fun h0 x1 h1 -> post’ h0 x1 h1))
let swap r1 r2 =

 let v1 = !r1 in let v2 = !r2 in

 (* Know (P1): exists h1 (v1, v2). h0 == h1 \ v1 == sel h0 r1 \ v2 == sel h0 r2 *)
 r1 := v2;

 (* Know (P2): exists h2 (). modifies {!r1} h1 h2 \ sel h2 r1 == v2 *)
 r2 := v1

 (* Know (P3): exists h3 (). modifies {!r2} h2 h3 \ sel h3 r2 == v1 *)
Monadic Effects, Example

(Pre): \text{addr_of}\ r1 \not= \text{addr_of}\ r2

(P1): \exists h1 (v1, v2). h0 == h1 \land v1 == \text{sel}\ h0\ r1 \land v2 == \text{sel}\ h0\ r2

(P2): \exists h2 (). \text{modifies} !\{r1\} h1\ h2 \land \text{sel}\ h2\ r1 == v2

(P3): \exists h3 (). \text{modifies} !\{r2\} h2\ h3 \land \text{sel}\ h3\ r2 == v1

\textbf{Goal}: \text{sel}\ h0\ r1 == \text{sel}\ h3\ r2 \land \text{sel}\ h0\ r2 == \text{sel}\ h3\ r1

(P3): \text{sel}\ h3\ r2 == v1 == \text{sel}\ h0\ r1 \text{ (P1)}

(P2): \text{sel}\ h2\ r1 == v2 == \text{sel}\ h0\ r2 \text{ (P1)}

(P3) gives \text{modifies} !\{r2\} h2\ h3.

By definition of \text{modifies} and (Pre), we derive \text{sel}\ h3\ r1 == \text{sel}\ h2\ r1 == \text{sel}\ h0\ r2
Modifies Theory

let modifies s h0 h1 = forall r. addr_of r \notin s ==> sel h1 r == sel h0 r

• Transitivity:
 modifies s1 h0 h1 \land modifies s2 h1 h2 \implies modifies (union s1 s2) h0 h2

• Inclusion:
 s1 \subseteq s2 \land modifies s1 h0 h1 \implies modifies s2 h0 h1
Exercises

• Stateful Sum
• Stateful Factorial
Richer Memory Models

• The stateful effect seen so far offers an OCaml-like memory model
 • A reference in scope is assumed to be live
 • References are not manually memory-managed

• We want to reason about C code:
 • Need to reason about liveness, more complex datastructures, stack vs heap, ...

• **Idea:** Keep the stateful effect, but change the underlying state to provide a C-like memory model
The Low* Framework

• Low* is a shallow embedding of a subset of C into F*

```ocaml
val memcpy (dst : buffer uint64) (src : buffer uint64)
  : Stack unit
  (requires λ h → length dst == length src ∧ live h dst ∧ live h src)
  (ensures λ h0 _ h1 → modifies (loc_buffer dst) h0 h1)
```
Low* Machine Integers

• A model of C integers, e.g., uint32
• Specified using ”mathematical” integers

\[
\text{val } v \ (n: \text{UInt32.t}) : \text{GTot } \text{nat}
\]

• Arithmetic operations can lead to overflow/underflow

\[
\text{val } \text{add} \ (n1 \ n2: \text{UInt32.t}) : \text{Pure } \text{UInt32.t}
\]
\[
(\text{ensures } \lambda x \rightarrow v \ x == (v \ n1 + v \ n2) \ % \ 2^{32})
\]

• Operations for signed integers require to avoid over/underflows

\[
\text{val } \text{add} \ (n1 \ n2: \text{Int32.t}) : \text{Pure } \text{UInt32.t}
\]
\[
(\text{requires } (v \ n1 + v \ n2) < 2^{31})
\]
\[
(\text{ensures } \lambda x \rightarrow v \ x == v \ n1 + v \ n2)
\]
Low* Arrays: Specification

• At the core of the Low* memory model, named buffers for historical reasons
• Represented in memory as a sequence of values:

```plaintext
val buffer : Type -> Type
val as_seq : #a:Type -> mem -> buffer a -> GTot (seq a)
```
Low* Arrays: Core API

- Usable through an API that ensures *spatial* and *temporal memory safety*

  ```ocaml
  val index (#a:Type) (b : buffer a) (n:UInt32.t{v n < length b})
      : Stack a
  (requires λ h → live h b)
  (ensures λ h0 x h1 → h0 == h1 ∧ x == Seq.index (as_seq h0 b) (v n))
  ```

- Very similar signature for upd
Low* Arrays: Pointer Arithmetic

• Low* allows (controlled) pointer arithmetic, to access a sub-array from a live array

  ```
  val sub (#a:Type) (b : buffer a) (start: UInt32.t) (len: ghost UInt32.t) : Stack (buffer a)
  (requires λ h → live h b ∧ v start + v len <= length b)
  (ensures λ h0 x h1 → h0 == h1 ∧ sub_spec b (v start) (v len))
  ```

• This corresponds in C to the operation `b + start`

• The modifies clause is also extended to reason about possible overlaps between arrays and slices
Low* Arrays: Allocation

• Low* provides functions to create new arrays (i.e., allocate) either on the heap (malloc) or on the stack

• Newly created arrays are assumed to be live, and with a location disjoint from all previously created arrays
Modeling Stack and Heap

• Instead of a monolithic memory model, the heap is divided into a tree of regions (conceptually, mem = map region_id heap)

• A specific subset of these regions models the C stack

• Two different effects: ST for arbitrary stateful computations, and Stack for computations only allocating in the current stack frame

• Clients can create a stack frame in a function using push/pop_frame()
Modeling Stack and Heap, Formally

effect Stack (a:Type) (pre: mem -> prop) (post: mem -> a -> mem -> prop) = ST a
 (requires λ h → pre h)
 (ensures λ h0 x h1 → post h0 x h1 ∧ equal_domains h0 h1)

let equal_domains (m0: mem) (m1: mem) =
 // The current top stack-frame is the same
 m0.tip == m1.tip ∧
 // The trees of heaps have the same shape
 Set.equal (Map.domain m0.h) (Map.domain m1.h) ∧
 // For each heap, the used addresses are the same
 (forall r. Map.contains m0.h r ==>
 Heap.equal_dom (Map.sel m0.h r) (Map.sel m1.h r))
A Complete (Toy) Low* Example

```plaintext
let main (): Stack Int32.t (requires \_ \_ \_ -> True) (ensures \_ \_ \_ \_ \_ -> True) =
  push_frame ();
let b: buffer UInt32.t = alloca 0ul 8ul in
  upd b 0ul 255ul;
  pop_frame ();
  0l
```

```c
int32_t main(void) {
  uint32_t b[8U] = { 0U };
  b[0U] = 255U;
  return (int32_t)0;
}
```
Extracting Low* Code

- Low* code can be extracted to C through the KaRaMeL compiler (https://github.com/FStarLang/karamel)

- KaRaMeL recognizes Low*-specific types and functions (e.g., buffer uint8 and upd), and translates them to standard C types and operations (e.g., uint8[] and assignment)

- The resulting code can be compiled with standard C compilers, and integrated in unverified projects
The KaRaMeL Compiler: Design Goals

- Produce idiomatic, readable C code
 - Despite verification, extracted code will likely be reviewed and audited by users

- Remain as simple as possible
 - Semantic preservation is proven on paper, however the implementation is trusted, the codebase needs to remain small

- Support a pragmatic subset of C
 - We control the Low* code we want to extract, we only need a reasonable subset of features for verifying real-world code, not the entire C standard
KaRaMeL: Producing Idiomatic Code

• KaRaMeL retrieves the F* AST after ghost code erasure
• Many compilation micropasses:
 • Unused Argument Elimination (often for extra unit arguments)
 • Inductives with a single constructor become structs
 • Empty structs are removed
 • Inductives with constant constructors (e.g., type t = A | B) are extracted to enums
 • …
• Also preserves original variable names, can preserve code comments, attempts to eliminate temporary variables, …
Low* Extraction Limitations

• Types with no equivalent in C (e.g., mathematical integers, sequences)
• Recursive datatypes (e.g., OCaml-style lists or trees)
• Polymorphism
 • KaRaMeL however monomorphizes code as much as possible before failing, so some uses of polymorphic functions and datatypes can be extracted
• Higher-order (beyond simple versions)
• Closures

All of these remain available for verification! But must be erased before reaching KaRaMeL
Using Low*: The HACL* Crypto Library

• HACL*: A verified, comprehensive cryptographic provider
• Provides guarantees about memory safety, functional correctness, resistance against side-channels
• ~150k lines of F* code compiling to ~100k lines of C (and Assembly) code
• 30+ algorithms (hashes, authenticated encryption, elliptic curves, …)
• Integrated in Linux, Firefox, Tezos, and many more
Verification Workflow

- **Sequences (Pure F*)**
- **Machine Ints (Pure F*)**
- **Buffers (Low*)**
- **Spec (Pure F*)**
- **Code (Low*)**
- **Standard (RFC, NIST)**
- **F* Standard Library**
- **HACL***
- **Optimized C Implementation**

Steps:
1. **Verify (F*)**
 - Success
 - Failure: Potential memory safety bug, or functional correctness bug, or side-channel leak.
2. **Compile (KaRaMeL)**
 - Success
 - Failure: Potential memory safety bug, or functional correctness bug, or side-channel leak.
3. **Verified C Implementation**
 - Source code not in Low*. Cannot be compiled to C

Failure:
- Source code not in Low*. Cannot be compiled to C
Example: Poly1305 MAC Algorithm

• Poly1305 is a message authentication code

\[poly(k, m, w_1 \ldots w_n) = (m + w_1 k^1 + \ldots + w_n k^n) \mod (2^{130} - 5) \]

• It authenticates a message \(w_1 \ldots w_n \) by:
 • Encoding it as a polynomial in the prime-field modulo \(2^{130} - 5 \)
 • Evaluating it at point \(k \) (first part of the key)
 • Masking the result with \(m \) (second part of the key)
Specifying Poly1305

• The specification comes from the official RFC
• The specification is our ground truth: it needs to be as simple and easy to review as possible
• The specification also needs to be executable: We can then “test” it on standard test vectors
• Solution: We write an inefficient but straightforward implementation in Pure F*, and benefit from extraction to OCaml
Specifying Poly1305

let prime = pow2 130 – 5

let felem = x: nat{x < prime}
let fadd (x: felem) (y: felem) : felem = (x + y) % prime
let fmul (x: felem) (y: felem) : felem = (x * y) % prime

type key = s:seq uint8{length s == 32}
...

Implementing Poly1305

Several steps:
1. Create a bignum library for representing field elements
2. Optimize prime-specific field arithmetic
3. Implement Poly1305, and expose the corresponding API
Bignum Library for $\mathbb{Z}/ (2^{130} - 5)\mathbb{Z}$

• The numbers are too large to fit machine integers
• We use an unsaturated 44-44-42 representation
• feval allows to retrieve the corresponding mathematical number

```plaintext
type felem = b:buffer uint64{length b = 3}

let feval (h: mem) (f: felem) : GTot Spec.felem =
    let s = as_seq h f in
    (v s.[0] + v s.[1] * pow2 44 + v s.[2] * pow2 88) % Spec.prime
```


Implementing Field Arithmetic

val fadd (a b : felem) : Stack unit
 (requires \(\lambda \ h \rightarrow \text{live} \ h \ a \ \land \ \text{live} \ h \ b \ \land \\
 \text{disjoint} \ a \ b \ \land \\
 \text{no_overflow} \ h \ a \ b) \\
 (ensures \(\lambda \ h0 _ \ h1 \rightarrow \text{modifies} \ (\text{loc} \ a) \ h0 \ h1 \ \land \\
 \text{feval} \ h1 \ a == \text{Spec.fadd} \ (\text{feval} \ h0 \ a) \ (\text{feval} \ h1 \ a) \\
)

This specification guarantees:
• Memory Safety
• Functional Correctness
• Side-Channel Resistance (omitted here, see last week)
Optimizing Field Arithmetic

• Many possible optimizations are purely algorithmic:
 • Replace a modular reduction by a Barrett reduction
 • Replace a modular multiplication by a Montgomery multiplication

• These are orthogonal from memory optimizations (e.g., unsaturated memory representation of bignums)

• Ideally, we want to reason about them in isolation to simplify verification
Proof by Refinement

• We write intermediate specifications
• Each layer is proven semantically equivalent to the layer above
• We can reason independently about different elements in each layer (algorithmic optimization, memory layout, aliasing, ...)

Mathematical spec (RFC; pure code)

Intermediate spec 1

Intermediate spec 2

Low* code (stateful, extracted to C)
Example: Modular Exponentiation

let rec exp (g: int) (n: nat) = if n = 0 then 1 else g * exp g (n-1) // Simple spec

let rec exp_opt (g:int) (n:nat) =
 if n = 0 then 1
 else if n % 2 = 0 then exp_opt (g*g) (n/2)
 else g * exp_opt (g*g) (n-1/2)

let equiv_proof (g:int) (n:nat) : Lemma (exp g n == exp_opt g n)

• exp and exp_opt are in the pure fragment of F*. Proving equivalence only requires reasoning about mathematical facts, not about memory.
Example: Modular Exponentiation

val exp_opt (g:int) (n:nat) : int

type felem_spec = s: seq uint64{length s == 3}
let feval_spec (f: felem_spec) : int = (v s.[0] + v s.[1] * pow2 44 + v s.[2] * pow2 88)

let fexp_spec (f: felem_spec) (n:uint64) : felem_spec = ...

val equiv_proof (f: felem_spec) (n: uint64) : Lemma (feval_spec (fexp_spec f n) == exp_opt (feval_spec f) (v n))

• Introduce low-level representation of integers using mathematical sequences
Example: Modular Exponentiation

\[
\text{type felem = b:buffer uint64\{length b = 3\}}
\]

\[
\text{val fexp (a : felem) (n: uint64) : Stack unit}
\begin{align*}
\text{(requires λ h \rightarrow \text{live h a &\& live h b &\& disjoint a b &\& no_overflow h a b)}} & \\
\text{(ensures λ h0 _ h1 \rightarrow modifies (loc a) h0 h1 &\& as_seq h1 a == fexp_spec (as_seq h0 a) n)} &
\end{align*}
\]

• Introduce memory reasoning (aliasing, disjointness)
• The implementation of fexp closely follows the structure of fexp_spec
Modular Exponentiation: Summary

- Equivalence proofs at each layer compose to provide an end-to-end proof
- Using different layers allows to separate proofs into independent parts
- How to separate and how many layers to create is up to the proof engineer
Implementing Poly1305

```haskell
import Poly1305_last_pass;

--查看全文，请访问...
```
The Need for Generic Implementations

• Families of cryptographic algorithms often share the same structure

MD5, SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512
The Need for Generic Implementations

• Families of cryptographic algorithms often share the same structure

• Implementing many high-quality variants is tedious and time-consuming

• Verification makes it even more costly

• Can we reason about implementations generically?
Generic SHA2 Implementations

```ml
let state (a : sha2_alg) = match a with
  | SHA2_224 | SHA2_256 -> buffer uint32
  | SHA2_384 | SHA2_512 -> buffer uint64

let bitwise_and #a (x y : state a) : state a =
  if alg == SHA2_224 || alg == SHA2_256 then UInt32.bitwise_and x y
  else UInt64.bitwise_and x y

let shuffle (a : sha2_alg) ... = ... bitwise_and #a x y ...
```

• We can write a generic implementation of each basic block
• We then write SHA2 functions generically
Generic SHA2 Implementations: Issues

• Naive generality leads to poor performance

```plaintext
sha2_state bitwise_and (alg:sha2_alg, x:sha2_state, y:sha2_state) {
    if (alg == SHA2_224 | alg == SHA2_256) {
        return UInt32.bitwise_and(x, y);
    } else {
        return UInt64.bitwise_and(x, y);
    }
}
```

• At each arithmetic operation, we now have a branching

• For performance-critical code, this is unacceptable

• We want genericity, but it must not impact performance
Reminder: The F* Normalizer

• Dependently typed proof assistants include a normalize which reduces computations.

```
assert_norm (length [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] == 10)
```

```
match [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl

1 + match [2; 3; 4; 5; 6; 7; 8; 9; 10] with | [] -> 0 | hd :: tl -> 1 + length tl

... 10 == 10
```

True

• Requires concrete terms, cannot reduce symbolic terms
Partial Evaluation and Inlining

• We rely on two mechanisms: *compile-time inlining*, and *partial evaluation* (which uses the normalizer under the hood)

```ocaml
inline_for_extraction noextract
let bitwise_and #a (x y: state a) : state a =
  if alg == SHA2_224 || alg == SHA2_256 then UInt32.bitwise_and x y
  else UInt64.bitwise_and x y

let shuffle (a: sha2_alg) ... = ... bitwise_and #a x y ...
```
Partial Evaluation and Inlining

- We rely on two mechanisms: *compile-time inlining*, and *partial evaluation*

```haskell
let shuffle (a: sha2_alg) ... =
  ...
  if alg == SHA2_224 || alg == SHA2_256 then Uint32.bitwise_and x y
  else Uint64.bitwise_and x y
  ...
```
Partial Evaluation and Inlining

• We rely on two mechanisms: compile-time inlining, and partial evaluation

```plaintext
inline_for_extraction noextract
let shuffle (a: sha2_alg) ... =
  ...
  if alg == SHA2_224 || alg == SHA2_256 then UInt32.bitwise_and x y
  else UInt64.bitwise_and x y
  ...

let shuffle_224 = shuffle SHA2_224
```
Partial Evaluation and Inlining

• We rely on two mechanisms: compile-time inlining, and partial evaluation

```ocaml
let shuffle_224 ... =
  ...
  if SHA2_224 == SHA2_224 || SHA2_224 == SHA2_256 then UInt32.bitwise_and x y
  else UInt64.bitwise_and x y
  ...

let shuffle_224 ... =
  ...
  UInt32.bitwise_and x y ...
```
SIMD Optimizations

- Modern CPUs offer SIMD (Single-instruction Multiple-Data) instructions for lightweight parallelism.
SIMD Optimizations

• Crypto is highly amenable to SIMD-based optimizations
 • Process several blocks in parallel
 • Parallelize the inner block cipher in ChaCha20 (intended by designers)
 • 10-20x speedup on ChaCha20 using AVX512 SIMD parallelism

• However, SIMD instructions are platform-specific

```
(master) OpenSSL / crypto / chacha / asm / chacha-x86_64.pl

1378    sub XOP_lane_ROUND {
1379      mv ($a0,$b0,$c0,$d0)=@ :
1828    sub AVX2_lane_ROUND {
1829      mv ($a0,$b0,$c0,$d0)=@;
2486    sub AVX512ROUND {
2487        # critical path is 14 "SIMD ticks" per round
2487        &vpadd ($a,$a,$b);
2488        &vpxord ($d,$d,$a);
```

• Maintaining optimized implementations for all platforms is hard
Verified Generic SIMD Crypto

• Similar technique as for SHA2, except, we abstract over vectorization level

\[
\text{val } \text{vec}_t \colon w: \text{width} \rightarrow \text{Type} \\
\text{val } (+|) \colon \#w: \text{width} \rightarrow \text{vec}_t \ w \rightarrow \text{vec}_t \ w \rightarrow \text{vec}_t \ w
\]

• We then verify a generic implementation

\[
\text{let } \text{chacha20_init} \ (w: \text{width}) \ (\text{state}:\text{vec}_t \ w) \ldots = \ldots \\
\text{state}.(a) \leftarrow \text{state}.(a) +| \text{state}.(b) \\
\ldots
\]

• And finally specialize many times

\[
\text{let } \text{chacha20_init}_\text{avx} = \text{chacha20_init} \ 4 \\
\text{let } \text{chacha20_init}_\text{avx2} = \text{chacha20_init} \ 8 \\
\text{let } \text{chacha20_init}_\text{avx512} = \text{chacha20_init} \ 16
\]
Higher-Order Combinators

• So far, this pattern applied to a parameter used for pattern-matching

• Cryptographic constructions frequently combine core operations.

Example:

• The Merkle-Damgård construction only requires an (abstract) compression function

• The construction consists of folding the core compression function over multiple blocks of data
Higher-Order Combinators

// Write once; this is not Low*
noextract inline_for_extraction
let mk_compress_blocks (a: hash_alg)
 (compress: compress_st a)
 (s: state a)
 (input: blocks)
 (n: u32 { length input = block_size a * n })
= C.Loops.for 0ul n (fun i ->
 compress s (Buffer.sub input (i * block_size a) (block_size a)))

// Specialize many times; now this is Low*
let compress_blocks_224 = mk_compress_blocks SHA2_224 compress_224
...
let compress_md5 = mk_compress_blocks MD5 compress_md5
...
Higher-Order and Partial Evaluation

• The methodology so far relies on partial evaluation and inlining

\[
\text{C.Loops.} \text{for } 0ul n \ (\text{fun } i \rightarrow \\
\quad \text{compress } s \ (\text{Buffer.sub input } (i \times \text{block_size a}) \ (\text{block_size a}))
\]

• This would inline the entire compress function inside the loop

\[
\text{noextract inline_for_extraction} \\
\text{let } \text{mk_hash } (a: \text{hash_alg}) \\
\quad (\text{init: init_st a}) \\
\quad (\text{compress_blocks: compress_blocks_st a}) \\
\quad (\text{compress_last: compress_last_st a}) \\
\quad (\text{extract: extract_st a})
\]

• Worse as combinator complexity grows. We need another methodology for generic code
Encoding Functors: Associative List Example

OCaml:

```ocaml
module type Map = sig
  type k
  val find: k -> (k * 'a) list -> 'a option
end

module type EqType = sig
  type t
  val eq: t -> t -> bool
end

module MkMap (E : EqType) :
  Map with type k = E.t = struct
  type k = E.t;
  let find x ls =
    let b = ref true in
    let lsp = ref ls in
    while !b do
      match !lsp with
      | [] -> b := false
      | (x', _) :: tl ->
        if E.eq x x' then b := false
        else lsp := tl done;
      match !lsp with
      | [] -> None
      | (_, y) :: _ -> Some y
    end
end
```

F: Replace with a linked list

```fsharp
type map (a : Type) = {
  k: Type;
  find: k -> list (k * a) -> 'a option
}

type eq_type = {
  t: Type;
  eq: t -> t -> bool;
}

let mk_map (e : eq_type) (a : Type) :
  m: map a{m.k == e.t} = {
  k = e.t;
  find = (fun x ls ->
    let b = alloc true in
    let lsp = alloc ls in
    while (fun () -> !* b) (fun () ->
      let ls = !* lsp in
      match ls with
      | [] -> upd b false
      | (x', _) :: tl ->
        if e.eq x x' then upd b false
        else upd lsp tl);
    match !* lsp with
    | [] -> None
    | (_, y) :: _ -> Some y)
```

Doesn’t compile to C (same with typeclasses)

Type constraint

Dictionary has runtime cost

Proofs and annotations omitted

We want a loop in the generated code

⇒ Specialization and partial evaluation?
Zero-Cost Functors: First Attempt (i)

Generic code (F*):

```haskell
type map (a : Type) = {
  k: Type;
  find: k -> list (k * a) -> ST (option a) ...
}

type eq_type = {
  t: Type;
  eq: t -> t -> bool; }

let mk_map (e : eq_type) (a : Type) : 
m:map a{m.k == e.t} = {
  k = e.t;
  find = (fun x ls ->
    let b = alloc true in
    let lsp = alloc ls in
    while (fun () -> !* b)
      (fun () ->
        let ls = !* lsp in
        match ls with
        | [] -> upd b false
        | (x', _) :: tl ->
          if e.eq x x' then upd b false
          else upd lsp tl);
    match !* lsp with
    | [] -> None | (_, y) :: _ -> Some y) }
```

Specialization:

```haskell
let str_eqty : eq_type = { t = string; eq = String.eq; }
let ifind = (mk_map str_eqty int).find

After partial evaluation:  

Types are specialized

```haskell
let ifind (x: string)(ls: list (string * int)) option int =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if String.eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```

What happens if the code has several layers?
Zero-Cost Functors: First Attempt (ii)

Peer device for a secure channel protocol:

(* "Module signature" *)

```
type dv = {
 pid : Type;
 send : pid -> list (pid * ckey) -> bytes -> option bytes;
 recv : pid -> list (pid * ckey) -> bytes -> option bytes;
}
```

(* "Module implementation" *)

```
type cipher = {
 enc : ckey -> bytes -> bytes;
 dec : ckey -> bytes -> option bytes;
}

let mk_dv (m : map ckey) (c : cipher) : d:dv{d.pid == m.k} = {
 pid = m.k;
 send = (fun id dv plain ->
 match m.find id dv with
 | None -> None
 | Some sk -> Some (c.enc sk plain));
 recv = (fun id dv secret ->
 match m.find id dv with
 | None -> None
 | Some sk -> c.dec sk secret)
}
```
Zero-Cost Functors: Encoding

```
let mk_send (pid : Type) (find : pid -> list (pid * ckey) -> option ckey) (enc : ckey -> bytes -> bytes) (id : pid) (dv : list (pid * ckey)) (plain : bytes) : option bytes =
 match find id dv with
 | None -> None
 | Some sk -> Some (enc sk plain)
```

```
let mk_find (k v : Type) (eq: k -> k -> bool) (x: k) (ls: list (k * v)) : option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with | [] -> upd b false
 | (x', _) :: tl -> if eq x x' then upd b false else upd lsp tl);
 match !* lsp with | [] -> None | (_, y) :: _ -> Some y)
```

```
(* Don't inline ifind *)
let ifind = mk_find i String.eq
```

```
let mk_send (pid : Type) (find : pid -> list (pid * ckey) -> option ckey) (enc : ckey -> bytes -> bytes) (id : pid) (dv : list (pid * ckey)) (plain : bytes) : option bytes =
 match find id dv with
 | None -> None
 | Some sk -> Some (enc sk plain)
```

```
(* Don't inline isend *)
let isend = mk_send string ifind aes_enc
```

... (* mk_recv and irec *)
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```haskell
let find (k v : Type) [eq: k-> k -> bool] (x: k) (ls: list (k * v)): option v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y
```

What we want to get:

```haskell
let mk_find (k v : Type) (eq: k-> k -> bool) (x: k) (ls: list (k * v)): option v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y
```
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```plaintext
define find (k : Type) (x : k) (ls : list (k * v)) : option v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```

What we want to get:

```plaintext
let mk_find (k v : Type) (eq: k -> k -> bool)
(x: k) (ls: list (k * v)): option v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```ocaml
assume val eq (k : Type): k -> k -> bool

let find (k v : Type) (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```

What we want to get:

```ocaml
let mk_find (k v : Type) (eq: k-> k -> bool) (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```plaintext
assume val eq (k : Type): k → k → bool

let find (k v : Type) (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```

What we want to get:

```plaintext
let mk_find (k v : Type) (eq: k→ k → bool) (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```ocaml
let type mindex = { k : Type; v : Type }
assume val eq (i : mindex): i.k -> i.k -> bool
let find (i : mindex) (x : i.k) (ls : list (i.k * i.v)): option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y
```

What we want to get:

```ocaml
let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
 (x: i.k) (ls: list (i.k * i.v)): option i.v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```haskell
type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
let b = alloc true in
let lsp = alloc ls in
while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```

What we want to get:

```haskell
type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
 (x: i.k) (ls: list (i.k * i.v)) : option i.v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```

Call-graph rewriting by means of meta-programming
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```ocaml
type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k) (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y
```

What we want to get:

```ocaml
let mk_find (i: mindex) (eq: i.k -> i.k -> bool) (x: i.k) (ls: list (i.k * i.v)): option i.v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_) = y) :: _ -> Some y
```

The code is re-checked

%splice [ mk_find ] (specialize (`mindex) [`find ])

Call-graph rewriting by means of meta-programming

67
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```ocaml

type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k) (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl
 match lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```

What we want to get:

```ocaml

type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
 (x: i.k) (ls: list (i.k * i.v)): option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl)
 match lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
```

The code is re-checked

Call-graph rewriting by means of meta-programming
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```plaintext
type mindex = { k : Type; v : Type }

[@ Specialize]
assume val eq (i : mindex): i.k -> i.k -> bool

[@ Eliminate]
let while_cond (b: pointer bool) (_:unit) = !*b

[@ Eliminate]
let while_body (i: mindex) (b: pointer bool)
(lsp: list (i.k * i.v)) (x:i.k) (_:unit) =
let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl

[@ Specialize]
let find (i : mindex) (x : i.k)
(ls : list (i.k * i.v)) : option i.v =
let b = alloc true in
let lsp = alloc ls in
while (while_body b) (while_body i b lsp x);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```

What we want to get:

```plaintext
type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
(x: i.k) (ls: list (i.k * i.v)): option i.v =
let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y
```

The code is re-checked

Call-graph rewriting by means of meta-programming
Zero-Cost Functors: Call-graph Rewriting

What we want to write:

```plaintext
type mindex = { k : Type; v : Type }

[@ Specialize]
assume val eq (i: mindex): i.k -> i.k -> bool

[@ Eliminate]
let while_cond (b: pointer bool) (_:unit) = !*b

[@ Eliminate]
let while_body (i: mindex) (b: pointer bool)
 (lsp: list (i.k * i.v)) (x:i.k) (_:unit) =
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl

[@ Specialize]
let find (i: mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (while_cond b) (while_body i b lsp x);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y
```

What we want to get:

```plaintext
type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
 (x: i.k) (ls: list (i.k * i.v)): option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

The code is re-checked

Also applicable to protocol implementations (e.g., Noise*)!

%splice [mk_find] (specialize (`mindex) [`find])

Call-graph rewriting by means of meta-programming
```
The HPKE Example

Hybrid Public Key Encryption
draft-irtf-cfrg-hpke-06

Abstract

This document describes a scheme for hybrid public-key encryption (HPKE). This scheme provides authenticated public key encryption of arbitrary-sized plaintexts for a recipient public key. HPKE works

• Generic in three classes of algorithms
  • Authenticated Encryption with Additional Data (AEAD)
  • Key Encapsulation Mechanism (KEM)
  • Key Derivation Function (KDF)

• 24 possible ciphersuites, many more implementations
A Generic, Verified HPKE Implementation

• Abstract over algorithms to verify a generic implementation (800 lines)
  
  ```ml
 val hpke_encrypt: cs:ciphersuite -> aead_encrypt cs -> ...
  ```

• Instantiate and extract each desired version/implementation (10 lines)
  
  ```ml
 let hpke_encrypt_avx_aes = hpke_encrypt (AESGCM, ...) aes_encrypt_avx
 let hpke_encrypt_avx2_aes = hpke_encrypt (AESGCM, ...) aes_encrypt_avx2
  ```

• Call-graph rewriting yields a specialized, idiomatic implementation. Calls to encrypt call directly into the corresponding AES-GCM library
Genericity: A Summary

• No performance hit due to genericity ("zero-cost abstraction")
• Reduces maintenance of verified code (only one generic implementation to maintain)
• Lowers development cost of new variants
  • Adding a new SIMD architecture only requires providing a model for basic operations (add, mul, ...) and extending a few datatypes
  • Adding a new HPKE ciphersuite only requires 10 lines of code (assuming the underlying primitives are implemented)
HACL* and Low*: Summary

- **Low***: A subset of F*, modeling a well-behaved subset of C
- **HACL***: A comprehensive, verified cryptographic library written in Low*, yielding human-readable, high-performance C code
- Specifications are executable and directly translated from RFCs
- Proof methodology relies on successive refinements to separate verification conditions
- Engineering methodology relies on generic implementations, which are specialized at extraction-time through partial evaluation and metaprogramming